Background
Our Approach
Best Practices

XML-Less EXI with Code Generation
for Integration of Embedded Devices
in Web Based Systems

Yusuke Doi, Yumiko Sato, Masahiro Ishiyama,
Yoshihiro Ohba, and Keiichi Teramoto

Corporate R&D Center, TOSHIBA Corp

loT 2012, Oct., 2012

10T 2012 Yusuke Doi 1/26



Outline

Q Background
o XML and loT
o Efficient XML Interchange

Q Our Approach
o XML-Less EXI
o Evaluations

Q Best Practices
o Extensibility

" or2012 | YusukeDoi

2/26



XML and loT
Efficient XML Interchange

Our View on loT

o Diversity of Devices
@ Long-life (10yrs or more) System
@ On Open Standards

e Socure Communication Flows

mmme Eoctrical Flows

Domain
“.I/ —_ Operations Bervics

. Markets ._Provider é
R be: A ==

Generation
T ransmission = - \Gtgmer
Wdt”

- DI stribution

NIST Special Publication 1108R2



Clarity & Extensibility

used in SEP2, IEC61850, OASIS-EIl and
OpenADR




Background
Our Approach
Best Practices

XML and loT
Efficient XML Interchange

Issues on XML

For Embedded Devices
o Too large

@ For communication
o For memory

@ <LoadShedAvailability>..</..>
—45 bytes

@ Too complex
o Large amount of specs
@ Number of cases to consider
enough to make an embedded programmer
scratch his/her head : (

10T 2012 Yusuke Doi 5/26



Background
Our Approach
Best Practices

XML and loT
Efficient XML Interchange

EXI: Efficient XML Interchange

XML

(encoder | CEEFTTTT)

EXI Stream

o W3C Recommendation
(http://www.w3.0org/TR/exi)

o Not a Compression: it is alternate encoding

10T 2012 Yusuke Doi

XML

6/26


http://www.w3.org/TR/exi

Grammar

XML and loT
Efficient XML Interchange

@ Schemaless XML: built-in grammar

o With Schema: Schema-informed grammar

XML
Document

(Input)

Static Grammar

(State Machines) £

I Agreement

The grammars
SHALL match

XML
Document
(Output)

L)

Static Grammar

Each transition in the state
machines is encoded in compact
form

" or2012 | YusukeDoi

7/26



Background
Our Approach
Best Practices

Issues (left) in EXI

XML and loT
Efficient XML Interchange

Communication use case in constrained nodes:
o XML Datamodel
o DOM-style processing requires large amount of
memory (not suitable for 10T)
o S(t)AX processing requires complex
programming (fragile for updates/changes)
@ Schema Interopeability
@ More consideration on communication use case
is required
o |-D: draft-doi-exi-messaging-requirement

10T 2012 Yusuke Doi

8/26



1) Background
XML and loT
Efficient XML Interchange

Q Our Approach
o XML-Less EXI
o Evaluations

3) Best Practices
Extensibility



XML-Less EXI
Evaluations

XML-Less EXI

XML-less m XML-less
encoder decoder
EXI Stream

struct some { struct other {

} }

@ Assumptions:

o |loT Device: 'struct’ level data structure
o EXI (XML): based on a schema

" or2012 | YusukeDoi

10/26



Background
Our Approach
Best Practices

XML-Less EXI
Evaluations

Expected Document Structure

HEAD
o Simple Repeating Structure BODY(0)
o A HEAD Part BODY()
o BODY Parts: repeated §
,element’ corresponds with BODY(n)
struct
o ATAIL Part TAIL

10T 2012 Yusuke Doi 11/26



XML-Less EXI
Evaluations

Code Generation

m Sensors, Human

Detectors, Power
Consumption Meter,

S £

Yusuke Doi

12/26



Background
Our Approach WL Le_ss =4
; Evaluations
Best Practices

Mapping Between EXI and struct

<?xml version="1.0" encoding="UTF-8"?>
<DemandResponse>
<EndDeviceControl>
<ID>101</ID>

struct target {
<duration>3600</duration int id:
<s‘ror‘r>1300004576</s’ror‘r>\ . Lo
<SotPoint> \ln‘r duration;
<type>0</type>

int start;
<volue>28</v0IuM int setpoint_type:
</SetPoint> \ ; ; .
</EndDeviceControl> int sefpoint_value;
</DemandResponse> }

10T 2012 Yusuke Doi 13/26



#include "app2encoder.h"
int main(int argc, char x*argv){

EncoderContext econ;

struct target data;

BITS_STREAM *bo;

bo = bits_fopen(fopen("tmpout.exi", "w"), 'w');
encoder_context_init(&econ, bo);

app2_start (&econ) ;

for (/* as many times */){
fill_some_target_data(&data) ;
app2_writebody(&econ, &data);

¥

app2_finish(&econ);

}



#include "grammar_specl.h"

#include "hook_appl.h"
#include "hookdef_appl.h"
int target_cb(void *p) {

struct target xdata = (struct target *)p;

// process target data

return O;
¥
int main(int argc, char *xargv) {
DecoderContext dcon;

BITS_STREAM *bij;

// 1/0 wrapper for bitwise read

bi = bits_fopen(fopen(FILENAME, "r"), 'r');
init_decoder_context(&dcon, target_cb);
exi_decoder(&dcon, bi);
finish_decoder_context (&dcon);



(visualization)




XML-Less EXI
Evaluations

EXI Processors

o Java (not suitable for 10T devices)
o Exificient
@ OpenEXI
o EfficientXML (AgileDelta Inc.)

o C

o EXIP
o EIGEN : Our implementation

O XML-Less EXI (El) with Code GENeration

" or2012 | YusukeDoi

17/26



XML-Less EXI
Evaluations

Size Comparison

@ Unfair comparison

o EXIP: (nearly) Fully functional EXI processor
o EIGEN: single function

@ For example, no way to generate a new document
structure on-the-fly.



Background
Our Approach
Best Practices

XML-Less EXI
Evaluations

Binary Size

EXIP EIGEN
Decoder | 2,526,364(*) 18,800
Encoder 380,060 17,864

*) EXIP Decoder built in our environment includes large
amount of gcc-related table — it should be optimized to less
than 512kB

10T 2012 Yusuke Doi 19/26



XML-Less EXI
Evaluations

Binary Size

eigen decoder

eigen encoder

exip encoder

0 100000 200000 300000 400000



Background
Our Approach
Best Practices

XML-Less EXI
Evaluations

Embedded Implementation

On STM32F103ZE (Cortex-M3)
with TOPPERS/ASP (u-iTRON)

o EXl-related Code: approx.
63kBytes
o Encoder, Decoder, 1/O:
13kBytes
o Full SEP2 Grammar:
50kBytes

o RAM Usage: approx:
9.5kBytes (+few kB stacks)
o Still have enough room to
optimize
(6k is for I/O buffer)

10T 2012 Yusuke Doi

Photo from http://jp.mouser.com/

21/26


http://jp.mouser.com/

1) Background
XML and loT
Efficient XML Interchange

23 Our Approach
XML-Less EXI
Evaluations

Q Best Practices
o Extensibility



Background
Our Approach Extensibility
Best Practices

Best Practices

(EXI Options)

Q
@ (Compact Grammar Implementation)
o Extensibility and Grammar Reuse

o Does it require n-times ROM for n versions of
schema?
No!

10T 2012 Yusuke Doi 23/26



Background
Our Approach Extensibility
Best Practices

Grammar Size and Backward Compatiblity

o To keep compact implementation of EXI
Grammar

@ Schemas should be extended via differential
include/import
o Type override should be done by xsi:type

Black arrows mean “included-from”

170 = 12 20
& & &

1.2 | delta o
s
1.1 delta 1.1| delta 32 —

23
S 2
o

1.0 1.0 1.0 ® 2.0

Full Full Full Full

10T 2012 Yusuke Doi 24/26



Background
Our Approach Extensibility
Best Practices

Conclusion

o Filled the gap between loT devices and
services
o XML-based integration
o C-lang. struct
@ XML-Less EXI with Code Generation
o Dedicated EXI encoder/decoder
o Code generation to support schema updates and
variety of devices.
@ Practices
o With a small care, EXI grammar could be
extensible without excessive implementation
overhead
o Implementation and options

10T 2012 Yusuke Doi 25/26



The Challenge

Seamless integration of 10T embedded
devices and the Internet and Web
services

__XML Assets
How deep

we can go?

Data center



	Background
	XML and IoT
	Efficient XML Interchange

	Our Approach
	XML-Less EXI
	Evaluations

	Best Practices
	Extensibility


