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ABSTRACT
The notion of Digital Twin is known as a means to access other-
wise dispersed lifecycle data of industrial devices, and enabling
advanced reasoning on top of the data via various kinds of models
(e.g. machine learning, simulation). Despite many studies on digital
twins, there is still a need for common architectures, platforms and
information meta-modelling that enable defining various lifecycle
data in a harmonized way, as well as integrating the information
with machine learning and simulation models; a gap that is filled by
this paper. Our approach for the integration of various digital twin
models addresses three known technical debt in machine learning
systems: data pipeline jungle, undeclared/unstable data dependencies
and undeclared consumers. Adopting such an integrated digital twin
platform can reduce the required time and effort to develop and
maintain digital twin-based solutions, as well as laying a foundation
to support a variety of digital twin-based use cases.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Software and its engineering→ Software design engineering.
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1 INTRODUCTION
Over the past years, the notion of digital twin has evolved from
real-time simulation models that are updated with IoT data from the
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field, to the digital representation of an entity (e.g., device, system),
which enables accessing dispersed lifecycle data via unified APIs of
the digital twin for different use cases [7]. Here, the lifecycle data
is no longer limited to the IoT data, but also includes engineering
and IT data, as well as various kinds of models. In fact, in many
industries including the manufacturing industry, digital twin is
considered a prerequisite for synchronization of operation and
maintenance [22].

As digital twins become a key part of IoT solutions, companies
have different levels of maturity with respect to their digital twin
solutions. Figure 1 shows five levels of maturity that we defined [11].
Here, the level 0 is the current state in a company, in which there are
data silos. The level 1 demands for standardized or at least company-
wide digital twin information models and APIs, so that different
organizations and use cases adopt same approaches for their digital
twins modelling. The level 2 demands for expressing correlations
among different models embodied within digital twins. At the level
3, the content of the digital twins can further be extended with more
advanced models such as machine learning (ML) and simulation
models. The level 4 is the enabler for more advanced use cases,
where multiple models are combined together, for example, to have
intelligent simulation models to predict the remaining useful life of
a motor.

Figure 1: A maturity model for digital twin solutions.

Recent studies [8, 10, 13, 18] show that a significant body of work
focuses on the simulation and optimization aspects (i.e., virtual
models and services) of digital twins, which map to the levels 3
and/or 4 of our maturity model without covering the levels 1 and 2.
By skipping over the levels 1 and 2, each digital twin solution may
end up offering a dedicated data pipeline, information modelling,
APIs and semantic modelling mechanisms. We have named this as
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’digital twin solution silos’ [12], which eventually leads to excessive
time and effort needed to develop and maintain individual digital
twin solutions in companies with a growing number of digital
twin-based use cases.

To prevent digital twin solution silos, we proposed an architec-
ture and information meta-model for an integrated digital twin
platform [12] in which the maturity level 2 for variety of non-
analytic applications is achieved. This paper extends our platform
architecture and information meta-model with digital twins that
can support individual ML/ simulation models (level 3) as well as
interconnected models (level 4). As a result, the following known
technical debt in the development of ML [20] as well as digital
twin-centric applications are addressed:

• Data Pipeline Jungle: Our integrated platform paves the way
to establish company-wide data pipelines and digital twin
models for various (not limited to ML) use cases.

• Undeclared/unstable data dependencies: Our digital twin in-
formation meta-model enables defining inter-dependencies
of information/ML/simulation models in a declarative way
so that automatic reasoning of the inter-dependencies can
be facilitated in future.

• Undeclared consumers: Our digital twin information model
wraps the model with an additional layer of model execution
engine and inherits access control by default to keep track
of the consumers. This means that any service that needs
to access models (whether simulation or ML model) needs
to go through our digital twin access control layer and can-
not directly call the model. This way there is no scope of
undeclared consumers consuming the service.

Addressing these technical debt and adopting an integrated digi-
tal twin platform can reduce the required time and effort to develop
and maintain digital twin-based solutions, as well as laying a foun-
dation to support a variety of digital twin-based use cases.

This paper extends our previous work [12] in the following
manners:

• An information meta-model for digital twins, which sup-
ports a) the generic notion of ’functions’ as a common way
of modelling ML and simulation functions, b) information
model elements to map the functions to various digital twin
information models to provide/consume data to the ML and
simulation functions, and c) information model elements to
create a chain of executable models

• Generic model execution components in our digital twin
architecture, which enable users to invoke an ML and/or
simulation model on demand, possibly leading to a chain of
model executions

• A concept for reusable deployment of ML and simulation
models to be accessible by our architecture

• Validation of the proposed concepts via an industrial example
comprising a combination of ML and simulation models

The rest of this paper is organized as follows. Section 2 describes our
use case and problem statement; Section 3 explains our digital twin
information meta-model and its application to our use case; our
platform architecture is explained in Section 4; Section 5 provides
the related work and Section 6 outlines the conclusion and our
future directions.

2 USE CASE AND PROBLEM STATEMENT
Simulation of a physical device is a part of many digital twin con-
cepts and architectures. A challenge is however that a simulator
does not match a physical device very well without tuning of the
simulation parameters. The reasons include e.g. different ambient
conditions depending on the place of installation or changes in
the device due to aging and degradation. Due to such deviations,
the actual behavior of the devices differs from the behavior in the
simulation.

Figure 2 shows a combination of simulation and ML to leverage
this mismatch between device and simulation to create thermal
fingerprints of an electrical motor. The basic idea is to train a ML
model to predict the relevant physical parameters from signal data
that can be easily collected by sensors installed on the motor. For
this purpose, a simulation model specific for the desired motor type
is loaded in the simulation runtime and a number of simulations are
run with different parametrization representing different instances
of themotor typewithin different states of degradation and different
operating conditions of the connected drive.

For theMLmodel, the set of parameters is the prediction target (y
in Fig. 2) it should learn. The simulated sensor values are the input
to the ML model from which the parameters should be predicted
(X in Fig. 2). For a given installed motor and drive in the field,
the real sensor values (X* in Fig. 2) can now be fed to the digital
twin cloud and be used as inputs to the ML model. The model
will return the parameters (y* in Fig. 2) that most likely represent
the current condition of that specific motor. This parameter set is
called the thermal fingerprint of the motor, and can be fed into
the simulation model that is running on the cloud. In addition, by
storing the thermal fingerprints over time, it is possible to monitor
the degradation of the electrical motor and improve the planning
of preventive maintenance activities.

Figure 2: Interacting models.

3 DIGITAL TWINS INFORMATION
META-MODEL

In [12] we proposed the information meta-model of our digital
twins, with the focus on its elements for making the back-end data
accessible via digital twins, to achieve the maturity level 2. In this
paper, we extend the meta-model with the elements related to ML
and simulation models, as depicted by the classes in the red color
in Figure 3. The classes in this diagram represent different concepts
that play a role to model lifecycle information of devices, related ML
and simulationmodels, as well as connectivity to external endpoints
to fetch the data into digital twins.
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Figure 3: The digital twin information meta-model.

The common information meta-model is based on the JSON for-
mat and complies with the object-oriented notions of types, object
instances, and relations among the object instances. As the classes
in the yellow color depict, each kind of lifecycle data is modeled
using a dedicated type; the actual data is modeled as instances of
the types. Each type of description consists of a set of properties.
Besides, the type descriptions may contain tags to augment them
with extra semantic information.

We distinguish between two major kinds of lifecycle data: the
one describing an entity along with its properties, and the other
describing changing variables, events, or alarms associated with
the entity. These can all be modeled in the common information
meta-model.

The actual data can be stored in our platform as instance models
of the aforementioned types, or the data can be kept in the original
data source and retrieved on-demand. This is particularly important
when the content of digital twins is stored in various sources (on-
premise databases, proprietary IT tools, etc.), and we would like
to keep the original data sources as the source of truth without
replicating their data within the digital twins. For such cases, the
respective digital twin types are marked as ’shadow’ types, meaning
that it stores the necessary unique properties to distinguish it from
other models, but does not have the actual content for the remaining
properties. Such a model is associated with the declarative endpoint
and mapping descriptions used for fetching the data and mapping
it to the model.

The classes in the green color in Figure 3 show the endpoint
descriptions. Each endpoint description is designated with a unique
identifier, and can have request and response properties. Each com-
munication with an endpoint has two sides: request and response.
For the request part, the invocation method (currently HTTP/REST
GET or POST), the address of the external server, the URL within
that address, and payload are specified. For the response part, the

object properties that are returned from that endpoint are defined
in the endpoint description.

The response object from an endpoint may be different from
the corresponding type description in our platform because the
endpoint might be an already existing one that serves multiple
other (legacy) applications. Therefore, our solution supports the
so-called mapping descriptions, which specify how the response
object properties and the corresponding type descriptions map to
each other. The classes in the blue color represent the elements
of the mapping descriptions. A mapping description is bound to
one type and can map the request/response properties of multiple
endpoints to the properties of that type.

In our digital twin information modelling, we treat ML and sim-
ulation models as functions with specific input and output parame-
ters, which are deployed on the cloud. In the digital twin informa-
tion modelling, the class FunctionDefinition enables defining such
a function, its name, endpoint address, and input/output parame-
ters specification. In addition, one may define extra properties for
each function on-demand; an example extra property is the URL in
which a simulation file is stored.

Each FunctionDefinition may be associated to zero or more Func-
tionMappingDefinition that in turn is bound to one device type in our
information model. This means that a simulation/ML model may
be executed for different device types. Each FunctionMappingDefi-
nition has a list of ParameterMapping specifications, which has a
separate entry for each input/output parameter of the respective
function. For each input parameter, the ParameterMapping specifies
from which properties/variables of which digital twin, the actual
value for the input parameter should be fetched. For each output
parameter, the ParameterMapping specifies in which property/vari-
ables of which digital twin type the output values should be stored.
The actual digital twin can be specified via the query attribute of
the ParameterMapping.

Each FunctionMappingDefinition defines the events that should
trigger to execution of a function, as well as execution dependencies
of functions, respectively via triggers and dependsOn properties. The
dependsOn specification defines the dependencies among models,
where the input of on model comes from the output of another
model. This specification also implies an execution order among
models. The triggers can be user invocation, a timer, the variables
updates in a digital twin, the occurrence of an event or alarm in a
digital twin, or an internal platform event such as the construction
of a new digital twin model. The triggers specifications enable
defining a chain of models that need to be executed in a sequence;
for example, when the results of one model is ready, the next model
is chain should start executing.

The separation of type definition from function definition in
our meta-model has the following benefits: a) The ML applications
have an exploratory nature where data scientist experiment with
multiple models whose input/output parameters may differ. By
separation the function specifications from the type specifications,
the latter ones remain intact if the former one evolves. b) The
reusability of functions increases as they can be bound to different
device types. c) The input/output parameters of a function can be
fetched from and stored in multiple types.

Figure 4 shows an example of defining dedicated types for a mo-
tor, a smart sensor, and a drive. These types define the properties
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and operational variables of the respective device, and are parts of
the specification of the devices’ digital twin. As we illustrated in
[12], depending on the requirements of use cases, dedicated types
can be defined to model different lifecycle data (bidding, engineer-
ing, installation, etc.) of a device. These types can modularly be
added to the description of the digital twin of a device, upon their
availability. For a specific device, these types can be instantiated
with concrete values for properties and variables; and the totality
of the object instances form the digital twin of that device.

The type abb.motors.M12AB5, which defines a specific kind of
industrial motor, has one relation named as mountedSmartSensors
that refer to the type abb.smartsensors.S123BC to model the smart
sensors that are mounted on the motor. In addition to the relations
among physical devices, we need to also define how the results of
ML and simulation models are stored and linked to the respective
devices. On one hand, each model has naturally different kinds of
outputs; on the other hand, since ML applications have an inherent
exploratory nature, there will be multiple models associated to a
device over its lifetime. Therefore, we need to make sure that new
models and their results can be flexibly added to the digial twin of
a device.

To this aim, we make use of type inheritance in our information
model. Here, the type abb.model.results is the base type for other
types that should be defined exclusively for maintaining the re-
sults of a specific ML/simulation model. This type does not define
any property or variable, as they have to be defined in inherited
types; the type abb.parameterPredictor.results shows an example.
To be able to associate the results of an ML/simulation model to a
device digital twin, we need to define a dedicated relation to the
type abb.model.results within the digital twin of the device. The
relation executableModels in the type abb.motors.M12AB5 shows an
example of such a relation. Since this relation is defined to the base
type abb.model.results, so that any object of its sub-types can be
referenced.

Figure 5 shows an example definition of a ML function and its
mapping. The function abb.parameterPredictor is deployed at the
specified URL, and has a set of input/output parameters. The func-
tion mapping defines one possible mapping of this function to the
motor of the type abb.motors.M12AB5. The actual motor for which
this function should be executed will be identified via its serial
number upon the invocation of this function. The specification
of the input parameters defines that value of the input parameter
speed should be fetched from the respective variable of the smart
sensor that is mounted to the motor. Since there can be multiple
smart sensors mounted to a motor, we should still explicity identify
the smart sensor of interest by its serial number; this can be done
either in the mapping specification or explicitly when we invoke
the function to make the mappings more reusable. The specification
of the input parameters defines that value of the input parameter
torque should be fetched from a drive; but since we do not have
any relation between drive and motor modelled in our digital twins
(see Figure 4), we should specify the drive of interest via its serial
number during the inovcation of this function. In the next section,
we explain how specific devices of interest can be specified upon
the invocation of a function.

The specification of the output parameters of this function spec-
ifies that the results of this function should be stored in an object

Figure 4: An example type definition.

of the type abb.parameterPredictor.results that will internally be
referenced by the corresponding motor object.

Figure 5: An example machine learning model definition.
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Figure 6 specifies a simulation function and its mapping to the
motor of the type abb.motors.M12AB5. This mapping specifies that
the function execution should be triggered when an object of the
type abb.parameterPredictor.results is created; i.e., the machine larn-
ing model abb.parameterPredictor is executed and its results are
available. The input parameters of this function are fetched from re-
spective properties of the abb.parameterPredictor.results, and the re-
sults will be stored in a new object of the type abb.thermalsimulation.results.

Figure 6: An example simulation model definition.

4 ARCHITECTURE
Figure 7 depicts the abstract architecture of our solution, which has
been implemented based on Microsoft Azure services. In our previ-
ous work [12], we explained the details of this architecture and its
APIs to applications to ingests backend data into digital twins; this
paper extends the previous work with necessary components and
APIs for supporting ML and simulation models and their execution.
For the sake of completeness, we explain the entire components of
the architecture in the following.

4.1 The Common Information Model
Components

Type Storage is a MongoDB database in which type descriptions
for digital twin models are stored; the component Type Processor
is a .Net microservice that interfaces this storage. Object Storage
is a Cosmos DB database in which object instances are stored; the
component Object Processor is a .Net microservice that interfaces
this storage. Both Type Processor andObject Processor offer dedicated
RESTAPIs to applications for create, read, update and delete (CRUD)
operations.

Event Storage is the telemetry storage based on Azure Timeseries
Insight technology. The communication with devices takes place

External Connectivity Components
[Software System]

Common Information Model
[Software System]

Object Processor
[Container: Microservice]

Manages the object models

Database
[Container: MongoDB
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[RPC]

Device
[Software System]

Description
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[HTTP/REST]
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Azure IoT Hub
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[AMQP/MQTT]

[]

Sends events/data
[AMQP/MQTT]
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[Software System]

Function REST Interface
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[HTTP/REST]
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[HTTP/REST]
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[HTTP/REST]
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[HTTP/REST]
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Model
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Platform Event Processor
[Container: Microservice]
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Platform Events
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[AMQP]

[]
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[ ]
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[]
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Figure 7: Overall architecture of the digital twin platform.

using AMQP or MQTT protocols and Azure IoT Hub service is
used to facilitate the communication. If a device does not natively
provide its OT data in our common information model, an industrial
edge device can be used as the interface to translate the device OT
data model to our common information model format.

The component Event Ingestor implements the functionality to
receive the events and telemetry data from IoT Hub and to insert
them in Event Storage. The component Event Query Processor in-
terfaces Event Storage to enable accessing device events via REST
APIs.

4.2 The External Connectivity Components
The function endpoint and mapping descriptions that are explained
in the previous section are input to the component Mapping Proces-
sor via its CRUD REST API, which stores them in Type Storage.

The component REST Communicator provides the functionality
for interpreting the endpoint and mapping descriptions to connect
to the external data sources and/or functions, make an invocation
to get their results, and map their responses back to the inter-
nal types defined in Type Storage. Our solution currently supports
HTTP/REST protocol for the communications with external data
sources and deployed functions.

4.3 The Model Execution Engine Component
The componentModel Execution Engine offers APIs to receive model
execution requests and execute the models accordingly.
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4.3.1 The Structure of the DeployedModel. Unlike normal software
deployment, ML model deployment [19] consists of :

1 Code for data preprocessing and execution of ML model.
2 ML Model, which is trained on the historical data and will
be used to get predictions.

3 Data required for getting predictions from ML model
The problemwith the above deployment is that it only focuses on

ML model deployment and misses the aspect that the ML pipeline
may also consist of additional software and analytics artifacts such
as simulation model or grid search which may work together with
ML model. Therefore, to accomodate such type of use cases model
deployment (hereby model is used for simulation, ML and analytics
model) can consist of following:

1 Code for data preprocessing and execution ofML, simulation
or analytics model.

2 Model, which can be a trained ML model, simulation model
or analytics model used by the execution code to get results.

3 Data required as an input to the model.
The model will be deployed as a microservice in our architecture

and the architecture was designed in a way that many different
models can be easily deployed and executed in an automated fash-
ion. Here, every deployment comprises a standard structure which
is given below and shown in Figure 8:

1 REST endpoint: It must be exposed to serve the incom-
ing requests with input data to the model and the response
consists of the model output.

2 I/O definition: It is the format in which the data must be
served to the REST endpoint and is received as the response
(predictions) from the model.

3 Code: It is the code required to load the model and execute
it to get the output. If the I/O definition data format differs
from the input and output format of the model, additional
preprocessing code must be included in the package for
transforming the data formats.

4 Model artifact: It should be present in the serialized form
to load it for getting the output.

To enforce the structure for the deployment, we used fastAPI [1]
to wrap the data preprocessing and model execution code. FastAPI
is a web framework which helps to build REST APIs and provides
an easy way of defining input and output definition for the requests
and response of the API endpoint. Also, FastAPI provides built-in
support for handling errors in case a non-compliant input data is
sent over the REST endpoints or an exception occurs while execu-
tion of the model. Furthermore, FastAPI provides a prebuilt docker
image which can be used to package the custom code and model
and thereby package it in a new docker image.

The built docker image can then be deployed as a microservice
in the architecture environment. The network configuration of the
container is done in such as a way that it can be only accessed
by other containers in its network and cannot be accessed by the
containers outside its network. This way the container is always
secure of the external unauthorized request.

4.3.2 The Execution of the Model. Figure 9 shows an example in-
vocation request for our use case. Here, to execute a function (i.e.,
an ML or simulation model), we must provide the unique identifier

Figure 8: Structure of the ML model deployment with the
libraries used for packaging.

of that function in our platform. Since a function can be bound
to multiple devices individually, and consequently there will be
multiple function mappings for that function, we must also specify
the function mapping of interest. In addition, the concrete device
for which the function must be executed has to be specified using
its typeId and serial number in our digital twin descriptions.

In addition, we must specify the digital twin of devices from
which the input values of the function should be fetched. In our
example mapping in Figure 5, these are a smart sensor and a drive
with a specific serial number. If the input values are telemetry data
(i.e. modelled as variables in our information meta-model), one
needs to also specify the date range for which the data needs to
fetched, and the operation that needs to be performed on the data.
If the input values are properties in our digital twin models, there
will be no need to specify these, because only the latest value of
the properties are available in our platform.

Figure 9: An example invocation request.

The Model Execution Engine component receives the input re-
quests, queries the specified function, mapping, and type descrip-
tions from Type Processor. To fetch the values of the function’s input
parameters, it also queries the specified properties and/or variables
from Object Processor or Event Processor, respectively. If the values
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must be fetched from external sources, Object Processor or Event
Processor issue a request to the External Connectivity Components;
the details of this step is explained in [12].

After fetching the specified input values,Model Execution Engine
invokes the specified function, which should have been deployed
on the cloud beforehand. Based on the mapping specification for the
function’s outputs, the outputs are stored in Event Storage and/or
Object Storage and are returned to the invoker as well.

As depicted in Figure 6, functions may form a chain through
their dependsOn or triggers specifications. As for triggers, our plat-
form makes use of Azure Service Bus to maintain various kinds
of events (either internal platform events or digital twin variable
updates/events/alarms), which occur in the platform. Each of the
processor components in our platform publish respective events
in the service bus, and Model Execution Engine subscribes to the
specified triggering events and initiates the execution of the re-
spective function. As for models dependencies, Model Execution
Engine interprets the dependency chain and executes the models
from the first model in the chain. The execution terminates after
the last model in the chain is successfully executed, or there is any
exception in the execution of models in the chain.

5 RELATEDWORK
Multiple classifications and surveys exist, which summarize the
state-of-the-art on the topic of digital twins [8, 10, 13, 18]. These
studies identify that a significant body of work focuses on the sim-
ulation aspects of digital twins for specific use cases in a distinct
lifecycle phase of devices. The authors in [8] indicate the need for
common architectures and platforms that offer means for defin-
ing digital twins especially by incorporating early lifecycle data,
and enabling interoperable interactions among digital twins. In
addition, [22] mention that digital twins can achieve maximal po-
tential benefit from digital transformation if ML models are learnt
and integrated to leverage historical data coupled with the current
(plant) state. In particular, decision-makers should be empowered
to query "what-if" situations to digital twins. The surrogate mod-
els mentioned in the use-case (see Section 2) can be used for this
purpose.

Whilst our previously proposed platform [12] enables supporting
various kinds of digital twin-enabled use cases, this paper shows
how our proposal can also support simulation and ML models
alongside the information models of digital twins. Our focus is not
on a specific simulation or ML model for a specific use case, but
on a generic platform in which digital twins with various kinds of
inter-linked information models, ML and simulation models can
be developed, as well as preventing some technical debt (namely,
data pipeline jungle, undeclared/unstable data dependencies, and
undeclared consumers), which may occur in the development of
both digital twin and ML-based systems to ensure these systems
are maintainable during their lifetime.

For instance, when addressing the data silo problem, one may
consider (cloud-based) data warehouse solutions such as Azure SQL
Data Warehouse and/or Data lakes for Big Data [6] as a potential
solution. We observe the following limitations to these solutions
compared to ours: Firstly, these solutions are data-centric and are
widely adopted for (business) reporting and analytics use cases.

However, there are many different kinds of Industrie 4.0 use cases
that require a device-centric view on data, need connectivity of
data models to physical devices and also must deal with the data
silo problem across the device lifecycle [17]. Adopting separate
solutions for reporting or analytics use cases leads to the solution
silo problem. Secondly, unlike our approach, these solutions usually
keep a copy of the data from data sources; hence, the original data
sources are not the source of truth and one may need to deal with
data inconsistency issues.

To the best knowledge of the authors at the time of writing, the
integration and management of simulation and ML models in Digi-
tal Twin infrastructures is not given sufficient attention in existing
scientific literature. For instance, the Asset Administration Shell
(AAS) [16] has been proposed as a digital twin for manufacturing
systems. Since the specification of AAS is still under development,
we experienced the standardization deadlock [4] problem in adopt-
ing AAS due to the late availability of its specifications, and its
insufficient expression power for our use cases. For example, the
current specifications of AAS do not cover events, various query
APIs, nor the strategies to ingest backend data and map it to the
AAS.Moreover, supporting digital twins with variety of inter-linked
ML and simulation models has not been a focus of AAS until now.
As for data interoperability, AAS is designed to enable interoper-
able data exchange across the vendors. In our solution, we take a
two-step approach for the data interoperability: 1) intra-company
interoperability using our information meta-model that can repre-
sented various kinds of lifecycle data and models, and 2) on-demand
translation of our information models to AAS for inter-company
interactions as we studied in [15]

Furthermore, in [21], an architecture for intelligent digital twins
in cyber-physical systems is proposed. However, the details of how
data ingestion from various sources takes place, as well as various
APIs that must be offered to applications are not discussed. Alam
and Saddik describe C2PS [2], a “digital twin architecture reference
model” for cloud-based cyber-physical systems. Their focus is on
network communication aspects and controller design. In [14], a
service-oriented application for knowledge navigation is presented.
The architecture of the application linking different data sources is
outlined briefly without mentioning the approach of how to link
those data sources together. In [23], a digital twin platform based
on a data-centric middleware is defined, whose architecture mostly
focuses on communication and data transfer between the physical
assets and simulation and not the data silo problem. In [3], a solution
is proposed for sensor data integration and information fusion to
build digital-twins for cyber-physical manufacturing. Contrary to
this solution, our proposal is not limited to specific sensor data,
also covers lifecycle data that come from various sources as well as
ML and simulation models.

In our contribution, we have provided a generic approach for
extending digital twins with simulation and ML models without
limiting ourselves to a specific use case or domain. Some related
works do exist [5, 9, 24] but with key differences. For instance, [5]
propose a ‘generic industrial architectural framework of a digital
twin’ to utilize real-time information from a physical asset as well as
structured information (based on Discrete Event Simulation) for the
process industry. In addition to their support for telemetry data and
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SQL databses, we harmonize heterogeneous enterprise data stored
in different external systems via the information meta-model.

The authors in [24] introduce a ‘generic CPS system architecture
for DT establishment in smart manufacturing’ using a ‘tri-model-
based approach’ (i.e. digital model, computational model and graph-
based model) which works concurrently to simulate real-world
physical behaviour and characteristics of the digital model. They
have a more device-centric solution whereby they address efficient
ingestion of device data and even enable direct control of devices.
However, we cover soliciting data not only from devices but from
external enterprise systems into the digital twin. Both, [5] and [24]
do not fully explain their information models, making it difficult
to judge the expression power of their infrastructures to support
diverse use cases.

In [9], an abstract and conceptual architecture is proposed for
composing multiple digital twins that are possibly offered by dif-
ferent companies. However, some challenges seem to remain open,
such as how would digital twins be composed if companies adopt
different digital twin frameworks. We have addressed this topic
in our previous work [15], where we enable on-demand interop-
erability across vendors by translating our digital twin models to
the AAS format. The study needs to be extended to also consider
digital twin ML and simulation models in future.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed an information meta-model and a
cloud-based architecture for creating and managing digital twins,
which consist of information models, ML models, simulation mod-
els, and/or a combination of these. Adopting a platform-based ap-
proach for digital twin solutions help to prevent the data pipeline
jungles technical debt in companies, because one integrated plat-
form paves the way to establish company-wide data pipelines and
digital twin models for various (not limited to ML) use cases. Our
information meta-model enables defining various lifecycle data
(including IoT data, IT and engineering data), as well as the specifi-
cation of ML and simulation models and their possible integration;
this solution helps to prevent the undeclared/unstable data dependen-
cies technical debt and paves the way to in future perform various
kinds of analysis on the declared dependencies. As for prevent-
ing the undeclared consumers, the model service is always called
through the model execution engine and never directly by the end
consumer service. This restricts access to the services which are
not authorized to call the model and therefore prevents undeclared
consumers to access the models.

As future work, we would like to experiment with different kinds
of simulation as well as other kinds of models such as geometry
model, behavioral model, etc. In addition, we would like to explore
the implementation of different analytics and ML techniques on
our platform e.g. stream analytics.
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