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Abstract
IoT systems grow quickly and are massively present in urban
areas. Their successful deployment requires autonomy that
can be built on automated learning technologies such as Deep
Learning. The IoT applications require important computa-
tional resources, rarely available on devices. Autonomous
IoT systems require the computation power available on the
edge and cloud servers in order to offload some tasks related
to the supported applications and the underlying platforms.
Task offloading constitutes a big challenge in autonomous
IoT systems due to the huge number of IoT devices for scenar-
ios of the family of smart cities. Managing task offloading in
such contexts requires adaptive strategies capable of taking
into consideration the rapid evolution of available resources
and proposing efficient offloading solutions to all received
requests. In this paper we use a Deep Reinforcement Learn-
ing (DRL) approach capable of handling large state spaces,
and resolve the optimization problem in this context, where
other techniques can not scale efficiently. Our solution is
based on a DRL agent that was developed in the ns3-gym
framework and was tested on IoT system scenario imple-
mented in the NS3 simulator. The results obtained show that
the DRL agent can adapt quickly to resource evolution in the
IoT system and can handle big number of demands fulfilling
scalabilty requirements of autonomous IoT systems.
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1 Introduction
IoT devices are used widely in many environments: indus-
trial IoT, smart cities, transport networks, etc. New appli-
cations deployed in these environments constitute a big
challenge as IoT devices are very constrained in resources
(small CPUs, limited memory, batteries...). Besides, new IoT
systems expand very quickly including a large number of
devices with heterogeneous capabilities and using smart ap-
plications based on new techniques such as Deep Learning.
The deployment of modern IoT systems require an overall
automation and resources management. Autonomous IoT
systems should be able to propose new strategies of resource
allocation and management to deploy applications on all
available devices in the system. One of the strategies that
can be used to achieve this goal is task offloading.
Task offloading is the process or technique that is used to
improve the performance, quality or efficiency of a compu-
tational task by delegating that task completely or partially
to a remote computational machine that usually has a more
powerful computational capacity than the local machine [4].
This technique requires a close collaboration between IoT
devices, edge and cloud servers present in the autonomous
IoT system. IoT devices can rely on available servers in order
to offload heavy tasks. At the same time, servers should man-
age requests from a huge number of IoT devices. Handling
such a complex problem requires adapting techniques ca-
pable of managing an increasing number of demands based
on available resources. Although many techniques can be
used to solve this problem, a few are capable of managing
large state spaces such as in smart cities. In this work we
explore the use of Deep Reinforcement Learning technique
to handle the task offloading problem in autonomous IoT
systems using ns3-gym [10] simulator.
The rest of this paper is organized as follows: in section 2 we
give a brief overview of related work, in section 3 we state
the problem, in section 4 we present the DRL model and in
section 5 the simulation tool, in section 6 we present the
simulation results and we conclude in section 7 with future
work.
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2 Related work
Several recent works have proposed solutions to solve the
task offloading problem. The authors in [22], [9], [20], [14],
[5], [2], [27] and [1] formulated task offloading as an opti-
mization problem that they solved using heuristic methods.
However, these methods are not very efficient or with an
unacceptable resolution time when considering offloading
scenarios with very large state space. This approach is the
one adopted also in [8], [18], [16] and [25] , as the authors
have treated task offloading in conjunction with the prob-
lem of resource allocation in resource constrained networks.
Task offloading can be approached as a Markov Decision
Process (MDP) problem as suggested by the authors in [6],
[24], [26], [21], [7], [6], [27] and [12]. To determine the op-
timal policy for the MDP problem several works, [26], [21],
[12], have implemented strategies based on Q-learning, a
classical reinforcement learning algorithm. Meanwhile this
algorithm suffers from the same deficits of resolution time
as the heuristic methods.
The authors of [6], [28], [13], and [24] have exploited the
power of neural networks with Deep Q-Networks to estimate
the value functions in a Deep Q-learning resolution. This is
a fairly promising approach and is considered robust. How-
ever, in [6], an architecture is implemented where a mobile
user generates tasks following a Bernoulli distribution. These
tasks are independent of each other and can be executed lo-
cally on mobile device or on a cloud. The transmission of
a task to the cloud is done via one of the 𝑁 available base
stations. The energy model is based on wireless charging
of the mobile user, but this model is not very realistic. The
choice of offloading to a remote cloud is also questionable
because edge computing could be more efficient. Finally, the
scalability of the solution has not been demonstrated; this
makes it difficult to adopt in massive IoT systems. Zhang et
al. [28] designed an architecture where mobile devices, in
addition to executing locally, have the choice to offload their
tasks to a multitude of edge servers. Those servers do not col-
laborate with each other. The authors have jointly addressed
the delay sensitivity problem by defining two types of tasks,
i.e., delay-constrained tasks and delay-sensitive tasks. How-
ever, the authors did not address the energy consumption
problem at all, which is very important given the energy con-
straints of mobile devices. Moreover, the formulation of their
task offloading model does not mention the size of the tasks
as a parameter and the scalability of their model has been
proven for a maximum of 500 mobile devices, which is very
low at the scale of large IoT scenarios i.e. smart cities. Huang
et al. [13] addressed the task offloading problem together
with resource allocation. They implemented an architecture
composed of wireless devices capable of performing tasks
locally or on a server. They equipped each device with a
time-division-multiplexing (TDD) circuit that allows it to
perform its task while charging itself via wireless power

transfer (WPT) technology. This makes their solution very
specific to WPT enabled devices. They implement a rein-
forcement learning agent based on a single neural network.
This agent allowed them to demonstrate the scalability of
their solution for only about 30 devices. In the state of the
art of deep reinforcement learning, single neural network
agents are considered to be less efficient than dual neural
network agents (Double Deep Q-learning) [23].
The authors in [27] formulated the task offloading as a MDP
problem which they solved by a dynamic programming
heuristic algorithm. An idea that we had discarded in our
work especially since the efficiency of such algorithms is less
compared to Deep Q-learning in large state spaces.
From an architectural point of view, the majority of the
works ([13], [18], [5], [2], [16], [25], [7], [6], [27], [12] and
[1]) adopt a centralized architecture while some others [29],
[8], [5], [26], [21] have implemented a decentralized archi-
tecture. In the centralized architecture, offloading decisions
are made at a central point, whereas in a decentralized ar-
chitecture each IoT device implements the decision making
algorithm. Therefore, the decentralized architecture seems
more realistic. However, IoT devices that lack resources to
run the algorithm may be discarded from the proposed solu-
tion. An IoT device that is discarded in this way and operates
its offloading decisions poorly could hinder the choices of
other devices that run the algorithm. The authors of [17]
and [14] have conducted their work on task offloading in a
Software-Defined Networks (SDN) context. In a task offload-
ing problem, the type of collaboration between the different
entities can be horizontal or vertical. This allows for differ-
ent offloading scenarios [3]. A collaboration between IoT
devices and an edge server is implemented in [19], [13], [26],
[2], [16], [25], [7], [6], [12] and [1]. This is a vertical collabo-
ration. The authors demonstrated gain in response time as
edge servers are considered closer to IoT devices. Whereas
in [22], and [15] the authors instead have IoT devices col-
laborate directly with cloud servers. This means that a task
is always processed because cloud resources are considered
as unlimited. However, the priority is no longer put on the
response time. An intermediate collaboration between the
horizontal and vertical approach is used in [29] where an IoT
device can offload its task to an edge server which in turn
can distribute the task between itself and other edge servers.
Adding a central cloud server to this operation results in the
collaboration employed in [8], [24], [18], [5], [11] and [14].
We consider that the resolution of task offloading and re-
source allocation problems can be done independently of
each other with the objective of simply adapting to the avail-
able resources in order to make the right task offloading
choices. In our approach, we have therefore focused only
on the task offloading problem based on a Deep Q-Network
approach. Moreover, to expand the solution to all IoT de-
vices in the system we adopted a centralized architecture.
Thus, the ability of the IoT device to run the algorithm is
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no longer a hindrance. We chose an IoT device-Edge server
collaboration in order to have a reasonable response time. To
the best of our knowledge, our work is the only one to use
the ns3-gym framework [10] to address the task offloading
problem by deep reinforcement learning. It is also one of the
few works to consider the resources of IoT systems as being
very dynamic with frequent random variations. The numer-
ous simulations carried out have shown that our solution
converges faster and guarantees good offloading decisions
in near-real time compared to existing solutions.

3 Problem statement
3.1 IoT system model
We consider an IoT system consisting of an edge server with
which IoT devices communicate wirelessly via an AP access
point as depicted in figure 1. The system is composed of 𝑁
IoT devices each with 𝑀 tasks to execute. We consider a
discrete time scale 𝐷𝑡 = 𝑡𝑖 with 𝑖 ∈ {1, 2, ..., 𝑀}. At each time
𝑡𝑖 , each IoT device executes one and only one task among
the𝑀 tasks it has.
The 𝑛𝑡ℎ IoT device has two possibilities of executing its𝑚𝑡ℎ

task at the discrete time 𝑡𝑖 : a local execution on the IoT
device or an offloading of the task to the edge server. A local
execution uses the limited device CPU and energy source.
We assume that the computing power of IoT devices is much
lower than edge server. The choice of execution type is made
at the beginning of each 𝑡𝑖 time and we assume that this
choice does not change during the same time 𝑡𝑖 . However,
the choice can be different for two different times 𝑡𝑖 .

3.2 Task model
We use 𝑆𝑛 to represent the task in terms of the transferable
data size and 𝐷𝑛 the size of the task expressed as the to-
tal number of CPU cycles required to complete it. In other
words, 𝐷𝑛 is the amount of computational resources needed
to complete the task. The relationship between 𝑆𝑛 and 𝐷𝑛 is
expressed as in equation (1)

𝑆𝑛 = \ ∗ 𝐷𝑛 (1)

We assume that a local computing or an offloading to the
edge server has no impact on 𝐷𝑛 .
In our model, we assume that one task is indivisible and
can not be processed on different devices, i.e., an IoT device
must choose exclusively between local and edge computing
to execute its task.

3.3 Local computing
We denote by 𝑇 𝑙𝑜𝑐

𝑛 the local execution delay for the 𝑛𝑡ℎ IoT
device when it decides to execute its task locally. This delay
is considered as the processing delay by the local CPUs and
is expressed as in (2)

𝑇 𝑙𝑜𝑐
𝑛 =

𝐷𝑛

𝑓 𝑙𝑜𝑐𝑛

(2)

𝑇
𝑒𝑑𝑔

𝑛,𝑡 =𝑚𝑖𝑛( 𝑆𝑛
𝑑𝑛
,
𝑆𝑛
𝑏𝑛
) 𝑇

𝑒𝑑𝑔
𝑛,𝑝 =

𝐷𝑛

𝑓
𝑒𝑑𝑔
𝑛

𝑇
𝑒𝑑𝑔
𝑛 = 𝑇

𝑒𝑑𝑔

𝑛,𝑡 +𝑇 𝑒𝑑𝑔
𝑛,𝑝

Table 1. Equations of 𝑇 𝑒𝑑𝑔

𝑛,𝑡 , 𝑇 𝑒𝑑𝑔
𝑛,𝑝 and 𝑇 𝑒𝑑𝑔

𝑛

Next, we define 𝐸𝑙𝑜𝑐𝑛 (3) as the energy consumption during
the local execution of the task where 𝑒𝑙𝑜𝑐𝑛 is the energy con-
sumption per task bit processed locally.

𝐸𝑙𝑜𝑐𝑛 = 𝐷𝑛 ∗ 𝑒𝑙𝑜𝑐𝑛 (3)

3.4 Edge computing

When the current task is to be offloaded, we denote by 𝑇 𝑒𝑑𝑔
𝑛

the temporal cost of offloading (edge computing) for the 𝑛𝑡ℎ
IoT device. It is composed of the transmission delay 𝑇

𝑒𝑑𝑔

𝑛,𝑡

i.e., the time needed for the task to be transmitted from the
IoT device to the edge server and the processing delay 𝑇 𝑒𝑑𝑔

𝑛,𝑝

depending on the processing speed by the edge server CPUs.
These expressions are explained in table 1

Then, as for the local computing, we define 𝐸𝑒𝑑𝑔𝑛 as the
energy consumption during the execution of the task on the
edge server and express it by (4)

𝐸
𝑒𝑑𝑔
𝑛 = 𝐷𝑛 ∗ 𝑒𝑒𝑑𝑔𝑛 (4)

where 𝑒𝑒𝑑𝑔𝑛 is the energy consumption per bit of task pro-
cessed on the edge server.
Note that we consider the return time of the task execution
result as negligible.

3.5 Problem formulation
According to the previous notations, at time 𝑡𝑖 , the total
cost 𝐽 of processing the current𝑚𝑡ℎ task of 𝑁 IoT devices is
expressed as (5)

𝐽 (𝑥𝑛𝑚) =
𝑁∑
𝑛=1

[𝐸𝑙𝑜𝑐𝑛 (1 − 𝑥𝑛) + 𝐸
𝑒𝑑𝑔
𝑛 𝑥𝑛 +𝑤𝑛 (𝑥𝑛𝑇 𝑒𝑑𝑔

𝑛 +

(1 − 𝑥𝑛)𝑇 𝑙𝑜𝑐
𝑛 )]

(5)

where 𝑥𝑛 represents the execution choice of the current task;
𝑥𝑛 = 0 for local execution and 𝑥𝑛 = 1 for edge computing and
𝑤𝑛 is a priority parameter for energy or computing power.
Extending the cost 𝐽 to the discrete time scale 𝐷𝑡 yields the
overall cost of executing all𝑀 IoT device tasks. Minimizing
this cost with constraints on energy consumption, computa-
tion time and variable 𝑥𝑛𝑚 , defines the optimization problem
(6) related to the IoT system depicted in figure 1

𝑚𝑖𝑛 𝐽 (𝑥𝑛𝑚) =
𝑁∑
𝑛=1

[
𝑀∑

𝑚=1
[𝐸𝑙𝑜𝑐𝑛𝑚 (1 − 𝑥𝑛𝑚)+

𝐸
𝑒𝑑𝑔
𝑛𝑚 𝑥𝑛𝑚 +𝑤𝑛 (𝑥𝑛𝑚𝑇 𝑒𝑑𝑔

𝑛𝑚 + (1 − 𝑥𝑛𝑚)𝑇 𝑙𝑜𝑐
𝑛𝑚 )]]

s.t. 𝐸𝑙𝑜𝑐𝑛𝑚 > 0;𝑇 𝑙𝑜𝑐
𝑛𝑚 > 0;𝐸𝑒𝑑𝑔𝑛𝑚 > 0;𝑇 𝑒𝑑𝑔

𝑛𝑚 > 0;𝑥𝑛𝑚 ∈ {0, 1}

(6)
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Figure 1. IoT system

All the notations useful for understanding the formulation
of the problem are shown in table 2. To solve the above
problem, we introduce a resolution technique based on deep
reinforcement learning. This technique is presented in the
next section.

4 DRL Model
We solve the problem of task offloading (6) using a deep
reinforcement learning (DRL) agent. Our agent is based on a
double deep Q-Network. This structure constitutes the state
of the art in reinforcement learning [23].
The DRL agent is in charge of mapping between the state of
the IoT system resources and the optimal execution choices.
To do so, it learns the policy defined by (7).

𝜋 : 𝑠𝑡 → 𝑋𝑁 (7)

where 𝑠𝑡 = {𝑣𝑖 }, 𝑖 ∈ {1, 2, 3, ...} with 𝑣𝑖 values characteriz-
ing the current state of the IoT system resources. We detail
the 𝑣𝑖 values in the following sections. And 𝑋𝑁 = {𝑥𝑛}, 𝑛 ∈
{1, 2, ..., 𝑁 } where 𝑥𝑛 is the current task execution decision
of the 𝑛𝑡ℎ IoT device. From a reinforcement learning per-
spective, 𝑠𝑡 and 𝑋𝑁 represent the state space and the action
space, respectively. The 𝜋 policy of mapping between these
two spaces is exploited at each 𝑡𝑖 . We associate a reward 𝑟𝑡
with each of the 𝑥𝑛 values of 𝑋𝑁 . The reward indicates to
the agent whether the decided action was right or not. This
reward is based on an evaluation at time 𝑡𝑖 of the cost 𝐽 and
represents an important part of the efficiency of the agent,
especially since it ensures its convergence. We express this
reward function as in (8).

If 𝐽 (𝑥𝑛𝑚) < 𝐽 (𝑥𝑛𝑚,𝑎𝑙𝑡 ) → 𝑟 (𝑡) = −1
Else If 𝐽 (𝑥𝑛𝑚) > 𝐽 (𝑥𝑛𝑚,𝑎𝑙𝑡 ) → 𝑟 (𝑡) = +1
Else → 𝑟 (𝑡) = 0

(8)

𝑆𝑛 size of the task in terms of transferable data
𝐷𝑛 size of the task expressed in terms of the total num-

ber of CPU cycles required to perform it
𝑇 𝑙𝑜𝑐
𝑛 /𝑇 𝑒𝑑𝑔

𝑛 local computing delay / cost in time of an execution
on the edge server when the task is offloaded

𝐸𝑙𝑜𝑐𝑛 /𝐸𝑒𝑑𝑔𝑛 energy consumed in performing the task locally /
energy consumed by running the task on the edge
server

𝑓 𝑙𝑜𝑐𝑛 /𝑓 𝑒𝑑𝑔𝑛 number of CPU cycles required to process one bit
of the task locally / number of CPU cycles required
to process one bit of the task on the edge server

𝑒𝑙𝑜𝑐𝑛 /𝑒𝑒𝑑𝑔𝑛 energy consumed to process one bit of the task
locally / energy consumed to process a fragment
of the task on the edge server

𝑑𝑛 average available bandwidth between the access
point AP and the edge server

𝑏𝑛 average available bandwidth between the IoT de-
vice and the access point AP

\ definition parameter of proportionality between
task size and number of CPU cycles required

𝑁 number of IoT devices with tasks to perform in the
IoT system

𝑀 number of tasks per IoT device
𝑥𝑛𝑚 decision to offload the𝑚𝑡ℎ task from the 𝑛𝑡ℎ IoT

device
0 = local computing
1 = edge computing

Table 2. Notations of the optimization problem

where 𝐽 (𝑥𝑛𝑚,𝑎𝑙𝑡 ) represents the cost 𝐽 for alternative action.
We denote by 𝑒𝑡 (9) the tuple containing the state of the
environment 𝑠𝑡 , the action 𝑎𝑡 ∈ 𝑋𝑁 performed from this
state, the reward 𝑟𝑡+1 given to the agent at time 𝑡+1 following
the previous state-action pair (𝑠𝑡 , 𝑎𝑡 ), and the next state of
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the environment 𝑠𝑡+1 . This tuple indeed gives us a summary
of the agent’s experience at time 𝑡𝑖 .

𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) (9)

Figure 2 shows the structure of the agent and the learning
process based on experiences. The successive experiments
are indeed stored in the replay memory. At each time 𝑡𝑖 , a
sample is then taken from this memory for training. The
structure is composed of two neural networks, the evalua-
tion network and the target network. In the Double Deep
Q-Network algorithm as presented in [23], the evaluation
network is used only to select the optimal action 𝑎𝑡 ∈ 𝑋𝑁

and the target network to generate the right output labels
𝑄𝑙𝑎𝑏 for neural network training. The generation of labels
can be summarized by the Bellman’s equation (10) where \𝑡
and \ ′𝑡 represent respectively the weights of the evaluation
network and the target network.

𝑄𝑙𝑎𝑏 = 𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑟𝑔max𝑄 (𝑠𝑡 , 𝑎𝑡 ;\𝑡 );\ ′𝑡 ) (10)
We provide in the algorithm 1 the pseudo-code for the

DRL agent learning policy 𝜋 .

Algorithm 2: Pseudo-code of DRL agent learning
policy 𝜋

1: Initialize replay memory capacity
2: Initialize the policy network with random weights
3: Clone the policy network, and call it the target network
4: For each episode:
5: Initialize the starting state
6: For each time step:
7: Select an action
8: Via exploration ou exploitation
9: Execute selected action in an emulator
10: Observe reward and next state
11: Store experience in replay memory
12: Sample random batch from replay memory
13: Preprocess states from batch
14: Pass batch of preprocessed states to policy

network
15: Calculate loss between output Q-values (𝑄𝑝𝑟𝑒 ) and

target Q-values (𝑄𝑡𝑎𝑟 )
16: Requires a pass to the target network for the

next state
17: Gradient descent updates weights in the policy

network to minimize loss
18: After time steps, weights in the target network are

updated to the weights in the policy network

5 Simulation tool
To implement the proposed scenario of the IoT system in fig-
ure 1 and to validate the effectiveness of the DRL agent, we
use the ns3-gym framework [10]. ns3-gym is a toolkit that

consists of two software components: Environment Gate-
way written in C++ and the Environment Proxy written in
Python. Both components are add-ons to the existing ns-3
and OpenAI Gym frameworks as depicted in figure 3. In the
framework, the ns-3 simulator implements environments,
while the OpenAI Gym unifies their interface. As ns-3 and
OpenAI Gym are some already existing frameworks, the im-
plementation of a generic interface between OpenAI Gym
and ns-3 allows seamless integration of these two frame-
works. That generic interface, figure 3, interconnects ns-3
network simulator and OpenAI Gym framework by trans-
ferring states and actions between the Gym agent and the
simulation environment. The main strength of this frame-
work is that it makes it possible to turn any ns-3 scenario
into an OpenAI Gym compatible environment and use the
flexibility of RL agent implementation in OpenAI Gym to in-
teract with the ns-3 scenario. We implement our IoT system
scenario in ns-3.

5.1 NS3-based environment
We classify the nodes in the IoT system in figure 1 into three
categories. The first one is the set of IoT devices having tasks
to execute. Each of these devices can execute a task locally
with dynamic 𝑓 𝑙𝑜𝑐𝑛 CPU cycles per task fragment; this gen-
erates an energy consumption of 𝑒𝑙𝑜𝑐𝑛 per executed task bit.
The total cost of a task execution by the IoT device is equal
to the execution time 𝑇 𝑙𝑜𝑐

𝑛 added to an energy consumption
𝐸𝑙𝑜𝑐𝑛 . Figure 4 illustrates the template used to instantiate each
of the IoT devices. The second category is the edge server,
which is able to receive, execute and return the execution
result of tasks sent to it. Each received task is executed with
dynamic 𝑓 𝑒𝑑𝑔𝑛 CPU cycles per bit with an energy consump-
tion per bit of 𝑒𝑙𝑜𝑐𝑛 . An execution on the server generates an
execution time of 𝑇 𝑒𝑑𝑔

𝑛 and an overall energy consumption
of 𝐸𝑒𝑑𝑔𝑛 . The third category includes the wireless access point
AP. It was modeled using a standard ns-3 simulator node
implementing the TCP/IP protocol stack and capable of for-
warding tasks from IoT devices to the edge server and vice
versa.
Note the state of the entire IoT system is a composed of the
states of its nodes. The ns-3 simulator provides node state
retrieval functions by default. We made use of them to speed
up the characterization of the state 𝑠𝑡 of the IoT system.

5.2 OpenAI Gym-based agent
Using the ns3-gym framework, we implement the deep re-
inforcement learning agent. With ns3-gym we can work
with any learning framework. Thus, in order to build the
Deep Q-Networks, we use tensorflow 2.2.0-rc1. We then pre-
processed the raw data of the 𝑠𝑡 states using scikit-learn
0.24.1 and numpy 1.20.1. We implemented the replay mem-
ory using the data structure deque of the Python library
collections.
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Figure 2. Double Deep Q-Network-based agent structure

Figure 3. ns3-gym framework architecture

In the next section, we will provide details about the Deep Q-
Networks hyper parameters and the size of the data structure
used.

6 Experimentation
We use the ns-3 simulator to implement the IoT system. This
simulator provides state retrieval functions for each node. To
make explicit the 𝑣𝑖 values of the 𝑠𝑡 state of the IoT system,
we noted, among the metrics recoverable from ns-3, those
that change at each time 𝑡𝑖 and thus can characterize the

Figure 4. Template for instantiating IoT devices

state of the resources during the same time. We realize that
considering an IoT subsystem consisting of the𝑛𝑡ℎ IoT device,
the AP wireless access point and the edge server, eight values
manage to characterize it: the execution capacity per task bit
on the IoT device, the energy consumption per task bit on
the IoT device, the size of the task to be executed, the packet
transmission rate of the IoT device, the available bandwidth
between the IoT device and the AP wireless access point,
the available bandwidth between AP wireless access point
and the edge server, the execution capacity per task bit on
the edge server, and the energy consumption per task bit on
the edge server. Those values constitutes the state 𝑠𝑡 = {𝑣𝑖 },
with 𝑖 ∈ {1, 2, ..., 8}.
In the Deep Q-Network implementation of our DRL agent
structure, we use Dense neural networks with an input layer,
three hidden layers and an output layer of 8, 120, 50, 50 and
2 neurons respectively. We use the Adam optimizer with
lr=0.001 for back-propagation of neural networks with a loss
function mse.

6.1 Convergence performance
In reinforcement learning, to measure performance we fol-
low the evolution of the rewards accumulated by the agent
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during several simulations. Each simulation is then consid-
ered as an episode. We consider𝑀 = 29 computational tasks
per IoT device and a performance condition of our DRL agent
when it perfectly realizes a good execution of about 28 tasks
during 30 successive episodes. The simulations conducted
generated the cumulative reward curve illustrated in figure
5.

Figure 5. Cumulative reward curve for the DRL agent

We see that at the beginning of the simulations, the agent,
less efficient, accumulates rewards between 1 and 26 during
the first 20 episodes. From the 20𝑡ℎ episode, a global conver-
gence is observed until the 40𝑡ℎ episode. This is explained
by the beginning of self-learning thanks to the experiences
stored in the replay memory. The filling of this memory from
the 110𝑡ℎ episode onwards has allowed an efficient learning
of the agent implying a stability of the rewards accumulation.
The defined stopping condition is thus satisfied, translating
the convergence of our DRL agent.

6.2 Scalability
To measure the scalability of our solution, we vary the num-
ber 𝑁 of IoT devices and observe the time required for the
DRL agent to apply the 𝜋 offloading policy to each IoT device.
The results obtained for this batch of simulations can be seen
in figure 6.

We see that for a number of IoT devices of about 500, the
average time of application of the policy and thus of genera-
tions of offloading decisions by the agent is 20𝑚𝑠 . And even
multiplying this number by 4, which is conceivable at the
scale of large IoT system, we obtain an average application
time less than 45𝑚𝑠 , showing that our proposed DRL agent
scale quite well with the increase of IoT devices involved.

6.3 Computing performance
In previous simulations, we evaluate the gain in task execu-
tion time over existing execution strategies namely always
local execution - strategy 1 - (on the IoT device) and always
execution on the edge server - strategy 2. We define the
optimal execution time 𝑇𝑜𝑝𝑡 of formula as the best feasible

Figure 6. Decision making time vs number of IoT devices

𝑇𝑜𝑝𝑡 =
𝑀∑

𝑚=1
[min(𝑇 𝑙𝑜𝑐

𝑛 ,𝑇
𝑒𝑑𝑔
𝑛 )] 𝑇𝑠𝑡𝑟𝑔1 =

𝑀∑
𝑚=1

[𝑇 𝑙𝑜𝑐
𝑛 ]

𝑇𝑎𝑔𝑡 =
𝑀∑

𝑚=1
[(1 − 𝑥𝑛𝑚)𝑇 𝑙𝑜𝑐

𝑛 + 𝑥𝑛𝑚𝑇
𝑒𝑑𝑔
𝑛 ] 𝑇𝑠𝑡𝑟𝑔2 =

𝑀∑
𝑚=1

[𝑇 𝑒𝑑𝑔
𝑛 ]

Table 3. Equations of 𝑇𝑜𝑝𝑡 , 𝑇𝑠𝑡𝑟𝑔1, 𝑇𝑠𝑡𝑟𝑔2 and 𝑇𝑎𝑔𝑡

Figure 7. Task execution time device-only vs edge-only vs
agent

execution time. We make explicit its formula as well as the
execution time formulas for strategy 1, strategy 2 and our
solution by equations in table 3.

The plot of these curves is shown in figure 7. We can see
that although at the beginning the agent is not performing
very well almost as good as executing all tasks locally, it ends
up being in phase with the optimal solution after about 110
episodes outperforming by far the solution of all offloading
to the edge server. This is due to the self-adapting ability of
the DRL agent. It is dynamic and develops the best offloading
strategy.
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7 Conclusion
In this paper, we used a Deep Reinforcement Learning agent
in order to solve the task offloading problem in autonomous
IoT systems. Our simulations were done using the framework
ns3-gym which make it possible to simulate very realistic
IoT environments while deploying efficient DRL agents in
the Gym framework. Our results show that this technique is
very promising and scale very well in large IoT environments
such as smart cities. The architecture deployed is based on a
centralized DRL agent handling task offloading requests from
IoT devices to edge servers. In our future work, we would like
to generalize the task offloading to horizontal and vertical
collaborations, making it possible to offload tasks between
IoT devices besides offloading to servers. A more distributed
DRL architecture based on multi-agents collaboration in
different parts of the autonomous IoT system will also be
explored.
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