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ABSTRACT
Modern IoT-based applications are developed by using microser-

vices implementing various functionalities. However, they still tend

to be rigid from a user’s perspective, i.e., the user typically adapts

to how the software is designed. Conversely, we want the software

and the IoT devices adapting to the user’s goal and its dynamic

nature, thus making the user as one of the key design element.

For these reasons, we presentMiLA4U, a multi-level self-adaptive

approach that works at the three different user, microservices, and

devices levels. Specifically, it 𝑖) makes use of a goal model defining

run-time user goals that must be achieved without compromising

the overall QoS, by adaptations towards the other levels. It therefore

𝑖𝑖) continuously monitors the QoS of the microservices and IoT,

and 𝑖𝑖𝑖) leverages multiple algorithms for the QoS-aware dynamic

selection, execution, and adaptation of microservices and IoT de-

vices. MiLA4U is experimented on a real case study. Evaluation

results show that it is able to satisfy the user goals while guaran-

teeing higher QoS on the microservices and IoT devices compared

to standard baselines.
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1 INTRODUCTION
Modern digital ecosystems, built at the crossroads of the Internet of

Things (IoT), the Internet of Services (IoS), and the Internet of People

(IoP) [1, 2], bring new challenges. On one hand, social challenges are
due to the changing user’s preferences and needs. However, modern

applications typically do not consider the dynamic nature of user’s

goals, thus affecting the user’s engagement. According to Gil et
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al., people cannot be excluded entirely from the adaptation loop,

since the human attention is a critical factor for user participation

and it may depend on different factors, e.g., user needs [3]. On the

other hand, modern applications are built by combining a multitude

of microservices and IoT devices running on edge, fog, and cloud

computational infrastructures [4]. However, technical challenges
arise when microservice-based solutions are applied to IoT systems.

This is due to uncertainties faced by IoT devices in addition to those

of microservices themselves (e.g., battery level, VMs/containers

resource constraints) [5, 6].

In this context, where applications are built on top of various

interchangeable services and IoT devices, the IoP asks for a shift to-

wards a user first paradigm where users have the freedom to define

their own personalized goals, which need to be accomplished by

the applications with certain Quality-of-Service (QoS) guarantees.

Being user needs possibly defined dynamically, applications have
to emerge at run-time, so to satisfy users’ goals and maximize the

system’s QoS.

Self-adaptation techniques can be exploited for managing run-

time uncertainties [7, 8]. Specifically, a chain of adaptations, both
at the service and at the physical layer, may be required to satisfy

evolving users’ goals, to deal with social challenges, while comply-

ing to system’s requirements, to deal with technical challenges. In

fact, although social and technical challenges do not coincide, they

correlate to each other. For instance, in a trip planning scenario,

the user may decide at run-time to use shared bike or bus based on

weather conditions, seat availability, etc. Her decision may impact

both the microservices to be called and certain physical devices to

be invoked (e.g., IR counters in bus, RFID of smartbikes).

Different adaptation approaches try to cope with such challenges,

such as [9–11], with the limitation of dealing with uncertainties

at only one or a subset of the three levels we envisage, namely

users, microservices and IoT devices. For this purpose, we propose
a user-driven multi-level self-adaptation approach, namely MiLA4U.
Given possibly thousands user goals dynamically derived by users’

behaviors, a set of microservices (replicated to multiple instances)

and IoT devices,MiLA4U selects the most appropriate microservice

instances so to satisfy (or not) user goals while guaranteeing the

best possible QoS of both microservices and IoT devices. In other

words, we want application’s workflow being dynamically defined,

similarly to what the IFTTT app
1
does. It basically combines apps

installed on the user device, driven by a user defined control-flow.

Differently than IFTTT, we aim to combine available microservices

and devices, whose execution is then orchestrated byMiLA4U. The
main design drivers that shape our approach are:

• A multi-level self-adaptation process relying on a correspond-

ing architecture that extends existing microservice-based

1
https://ifttt.com
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IoT reference architectures. Thus,MiLA4U can be built on

top of existing architectures to bring self-adaptation.

• A user goal model supporting the system to transparently

derive user’s goal at run-time based on the user’s selection

of functionalities among those offered by the application.

Then, the application’s workflow is automatically derived

by the user’s goal to reflect the selected functionalities, their

execution order, and QoS guarantees.

• Self-adaptation algorithms run by the architectural compo-

nents and handling adaptation concerns arising from differ-

ent entities through different levels, namely user, microser-

vices and devices levels.

We evaluate our approach on a real microservice-based IoT appli-

cation. To show the effectiveness of MiLA4U in performing multi-

level adaptations, we compared it with three baseline approaches

that are representative of a possible benchmark. The results of

our experiments show that our approach exhibits remarkable im-

provement compared to baselines in achieving users goals while

maintaining the overall QoS requirements of the system. Moreover,

to the best of our knowledge there are no available self-adaptive

exemplars/benchmarks that combine users, microservices and IoT.

We believe that this work can serve as a potential benchmark for

future self-adaptive research of this kind.

2 MOTIVATING CASE STUDY
Wemotivate our work with a microservice-based IoT system

2
devel-

oped for the street science fair of the city of L’Aquila. In this event,

the research community and public are brought together to share

a combination of entertainment and information. It takes place at

multiple venues in the city center and witnesses around 25,000 par-

ticipants every year. To better manage the crowd and for improving

the quality of the visiting experience, we developed the NdR mo-

bile app
2
, providing different features such as real-time parking lot

availability, venue booking, weather information, parking lot rec-

ommendation. Figure 1 shows the high level architecture of the NdR

application. The information on crowd and car movement in the

Figure 1: High-level architecture of the NdR Application

venues and parking lots are captured using different sensors such

as people counters, parking mats, cameras and QR code readers.

The data provided by the sensors are further exploited by various

microservices (e.g., parking mat service handles the data coming

from parking mats) to accomplish the different functionalities of the

NdR mobile app. Eventually, to accomplish any functionality, NdR

mobile app, like any modern applications, entail a predefined static

application flow, such as check availability→ book venues→ get

parking recommendations→ check weather. However, in dynamic

2
http://streetscience.it

contexts, considering the heterogeneity and multitude of involved

actors, such as users, microservices and IoT devices, different user’s
needs and preferences can arise and impact multiple levels. An

example is given in the following:

i) application: To select between indoor/outdoor event, a user

might want to first know the weather conditions and then, check

for parking lots. Instead of forcing the user to follow a predefined

flow, an adaptation can be to dynamically combine the weather and

parking microservices to accomplish the user’s goal.
ii)microservice: Further, the system should be able to combine the

instances of weather and parking microservices that offer the least

response time to ensure that the overall response time perceived

by the user is minimized.

iii) device: In the above scenario, the parking microservice requires

data only from the parking mats. Hence, the data transfer frequency

of the other IoT devices can be reduced to save more power.

Hence, the system should have the ability to dynamically adapt

based on the user’s goals. Moreover, if we consider, for instance,

response time and devices energy as quality attributes, thenwe derive
the following objective: given i) 𝑒𝑅𝑇𝑚𝑎𝑥 , the maximum expected

response time for a given user goal, and ii) 𝐸𝑚𝑎𝑥 , the maximum

energy that can be consumed by the IoT devices for an execution

period of time 𝜏 , at any point of time 𝜏 , the overall objective of the

system is maximizing the following utility function,𝑈𝜏 . It enables

us to quantify the satisfaction of 𝑒𝑅𝑇𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥 :

𝑈𝜏 = 𝑥𝑢 ·𝑄𝜏 + 𝑥𝑒 · 𝐸𝜏 , with 𝑄𝜏 =
∑𝑛
𝑖=1 𝑞𝑖

𝐸𝜏 =

{
𝐸𝑚𝑎𝑥 − 𝑒𝜏 if 𝑒𝜏 < 𝐸𝑚𝑎𝑥

(𝐸𝑚𝑎𝑥 − 𝑒𝜏 ) · 𝑝𝑒𝑣 otherwise

𝑞𝑖 =

{
𝑒𝑅𝑇𝑚𝑎𝑥 − 𝑟𝑡 (𝑖) if 𝑟𝑡 (𝑖) < 𝑒𝑅𝑇𝑚𝑎𝑥

(𝑒𝑅𝑇𝑚𝑎𝑥 − 𝑟𝑡 (𝑖)) · 𝑝𝑟𝑡 otherwise

where, 𝑥𝑢 , 𝑥𝑒 ∈+ are weights that capture the priority of user goal

completion time and energy savings, respectively. 𝑄𝜏 captures the

sum of user goal response time gain (this also inherently captures

the response time of the involved microservices) for 𝑛 goals served

within a period 𝜏 . 𝐸𝜏 and𝑞𝑖 are piece-wise functions that capture the

energy savings and response time, respectively, where 𝑝𝑒𝑣 , 𝑝𝑟𝑡 ∈+
represent penalties for the violations of energy and response time

thresholds, whereas 𝑒𝜏 represents the total energy consumed by

the IoT devices for the 𝜏-period, and 𝑟𝑡 (𝑖) represents response time

of 𝑖𝑡ℎ goal.

3 MILA4U ADAPTATION APPROACH
The proposed user-driven multi-level adaptation approach relies

on a corresponding architecture
3
, which was outlined in a prelimi-

nary and abstract way in our previous work [12]. It is built on top

of traditional architecture for microservice based IoT system [4],

with additional components we defined to support adaptation. This

guarantees a fully decoupled extension and is done to promote

the generalizability and reusability [13] of MiLA4U. In this work,

we provide the adaptation methods behind MiLA4U used for effec-

tively managing the adaptation concerns arising from applications,

microservices and IoT devices. Fig. 2 reports the overall multi-level

adaptation process realized by the newly defined components, and

the interactions among them, enabling the adaptation to be per-

formed in cooperation.

3
The graphical representation of the architecture can be found in our online material

at https://github.com/karthikv1392/MiLA4U/wiki/MiLA4U-Architecture

https://github.com/karthikv1392/MiLA4U/wiki/MiLA4U-Architecture
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Figure 2: Overall multi-level adaptation process of MiLA4U.

At the application level (Fig. 2 A ), the adaptation is triggered

with the selection of desired functionalities by the user with the

help of a Mobile/Web UI. This is further translated into a user goal

(cf. Section 3.1) by a User Goal Parser which then identifies the set

of microservices and tags the desired QoS required to accomplish

the goal. This information is further processed by the Service Man-
agerwhich identifies the optimal set of microservice instances, w.r.t.

to QoS requirements, to accomplish the user goal (cf. Section 3.1).

The identification of microservice instances at application level is

supported by microservice level adaptation (Fig. 2 B ). It makes use

of a QoS Analyzer, responsible for analyzing the QoS and context

information (e.g., location) of the microservices and further iden-

tify the need for adaptation (e.g., QoS violation) based on the data

obtained from the Data Processor. This information is then passed

to a Decision Maker which periodically ranks the microservices

based on QoS and context information to aid application level adap-

tation (cf. Section 3.2). Further, based on adaptation request from

QoS Analyzer, it generates microservice adaptation strategy (e.g.,

add/remove microservices) and execute them by using Microser-
vices Adapter. The adaptation at application and microservice level

together support adaptation at device level (Fig. 2 C ) such that the

QoS of the IoT is optimal. This is achieved with the help of an IoT
Adapter which uses the real-time QoS data available from the Data
Processor and the data from QoS Analyzer on the request arrival

rate of microservices to adapt the IoT devices (e.g., reconfigure

devices) (cf. Section 3.3).

In the following, driven by Fig. 2, we introduce the application

level adaptation, then how it works in conjunction with the adap-

tation in microservice level. Lastly, we see how the former two can

support the device level adaptation.

3.1 Application Level Adaptation
The application level adaptation is supported by i) a goal model, (im-

plemented by the User Goal Parser), and ii) the service management
algorithm.

Goal Model. The presented goal model supports applications to

Table 1: Goal model syntax.

GUser ::= F+

F ::= f
?[QoS] |[F and F]

?[QoS] |[F or F]
?[QoS] |

one_of [f1 . . . f𝑛]?[QoS] |seq [f1, . . . , f𝑛]?[QoS] |
⊤ |⊥

QoS ::= ‘rt:’ RT
RT ::= [Thresholdmin , Thresholdmax]

Threshold ::= eRTmin |eRTavg |eRTmax
eRT ::= NUMBERrt sec |NUMBERrt ms

NUMBERrt ::= 𝑛, 𝑛 ∈ N
f ::= ‘ticket_availability’ | ‘weather_checking’ |

‘event_booking’ | ‘parking_recommendation’

derive personal objectives at users level. Specifically, we aim to al-

low application’s workflow being dynamically defined, within the

boundaries of the functionalities it exhibits. For this reason, the

proposed goal model supports the definition of procedural goals
representing an abstraction of the application’s workflow directly

coupled with the application functionalities. Table 1 reports the

syntax of our goal model. A goal, namely GUser, defines as objec-
tive a desirable (sub)set of functionalities, namely F+, as per user
preferences, selected from the overall set of currently available func-

tionalities, namely f, offered by the application. Moreover, in order

to derive F, our goal model foresees the use of control-flow con-

structs, namely and, or, one_of and seq, which can be specified

to recursively combine functionalities, thus to create application
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workflows of different complexity. Goals of type and and or suc-
ceed/fail as defined by the logical operators. The one_of operator
is equivalent to the or and specifies the user’s desire of indistinctly

accomplishing one of the listed functionalities. It can be used for

long sequences of alternative functionalities, since it can be fastest

parsed. An trivial example is given in (1):

GUser ::= one_of [‘weather_checking’, ‘parking_recommendation’]
(1)

It might be used to decide about the participation to an event of

the street science fair. Indeed, bad weather conditions or parking

unavailability may impact the user’s decision. A goal of type seq,
instead, specifies a set of functionalities to be executed in the given
order, e.g., in (2).

GUser ::= seq [‘parking_recommendation’, ‘event_booking’] (2)

A hierarchical relation (or inhibition relation) among the avail-

able functionalities (see (3)) can be defined, to establish any prece-

dence among them.

‘ticket_availability’ ≻ ((‘event_booking’ ⪰
‘parking_recommendation’) ∥ ‘weather_checking’) (3)

Each functionality f can be optionally labeled with the desired

QoS that the (dynamically selected) microservice implementing

it is expected to show, via the ?[QoS] construct. Also combined

goals might be optionally labeled with the desired QoS, i.e., the

QoS expected by the execution of the dynamically defined applica-

tion workflow. Currently, in our work, the QoS specification refers

to the response time, RT, foreseen for the generated application

workflow, and expressed as a range between two Thresholds values,
to deal with run-time uncertainties. Thresholds values might be

determined by admins/developers as the expected response time,

eRT, from a user perspective. An example is given in (4):

GUser ::= [‘ticket_availability’ and‘event_booking’]rt:[3𝑠𝑒𝑐,5𝑠𝑒𝑐 ]
(4)

Eventually, it is easy to notice that the presented goal model is

open to extensions, as we plan for our future work, with further

control-flow constructs and QoS parameters. Then, the more func-

tionalities are offered by the application, the more diverse goals

can be defined with the goal model.

Service Manager. Once the goal has been derived, it is parsed

by the User Goal Parser, by means of regular expressions, and it

results in a tree-like structure. The parsed goal is then passed to

the Service Manager that is in charge of selecting the optimal set of

microservices to accomplish the user’s goal (cf. Fig. 2 A ). To this

aim, it employs Algorithm 1 that takes as input two parameters:

i) The 𝑔𝑜𝑎𝑙 that provides the main control-flow constructs. For

instance, for a goal of type GUser ::= ‘parking_recommendation’
and ‘event_booking’, the construct and becomes the root while

functionalities its child nodes.

ii) 𝐹𝑚𝑎𝑝 , i.e., the mapping between the functionalities available

in the system, (and in the goal model), and the corresponding mi-

croservices offering them. The algorithm first checks if the 𝑔𝑜𝑎𝑙 is

a functionality. If true, it executes the functionality by invoking

the corresponding microservice identified by the Instance_Selector
function using 𝐹𝑚𝑎𝑝 (lines 2-3). If false, it checks the type of the
control-flow construct to determine the execution flow. If the con-

struct is seq, then the functionalities expressed are sequentially

executed (lines 4-6). In case of a construct of type one_of, the

execution breaks as soon as one of the functionalities is success-

fully performed (lines 7-11). For handling the and control-flow

construct, the algorithm performs a recursive operation by taking

as input either sides of the goal, ie., 𝑔𝑜𝑎𝑙 .𝑙𝑒 𝑓 𝑡 and 𝑔𝑜𝑎𝑙 .𝑟𝑖𝑔ℎ𝑡 , in a

parallel and asynchronous manner (lines 12-15). The same happens

for goals of type or, with the only difference that only one of the

two goal’s sub-trees is taken. To perform each functionalities, the

Service Manager first identifies the best instance of a microservice

to be invoked. This is achieved by sending the service name to

the Instance_Selector. It makes use of a rank map that, for each

microservice 𝑚 ∈ 𝑀 , contains the set of location zones 𝐿 (e.g.,

US, Europe), where each location zone, 𝑙 ∈ 𝐿, consists of a set of
available microservices instances 𝑁 ranked based on their QoS.

Algorithm 1 QoS-aware Service Management

1: procedure Service_Manager(𝑔𝑜𝑎𝑙 ,𝐹𝑚𝑎𝑝 )

2: if 𝑔𝑜𝑎𝑙 is in 𝐹𝑚𝑎𝑝 then ⊲ leaf node

3: Execute(Instance_Selector(𝐹𝑚𝑎𝑝 [𝑔𝑜𝑎𝑙 ]))
4: else if 𝑔𝑜𝑎𝑙 = seq then
5: for 𝑔𝑜𝑎𝑙 in 𝑔𝑜𝑎𝑙 .𝑐ℎ𝑖𝑙𝑑 do
6: Execute(Instance_Selector(𝐹𝑚𝑎𝑝 [𝑔𝑜𝑎𝑙 ]))
7: else if 𝑔𝑜𝑎𝑙 = one_of then
8: for 𝑔𝑜𝑎𝑙 in 𝑔𝑜𝑎𝑙 .𝑐ℎ𝑖𝑙𝑑 do
9: s← Execute(Instance_Selector(𝐹𝑚𝑎𝑝 [𝑔𝑜𝑎𝑙 ]))
10: if s = success then
11: break
12: else if 𝑔𝑜𝑎𝑙 = and then
13: do in parallel
14: Service_Manager(𝑔𝑜𝑎𝑙 .𝑙𝑒 𝑓 𝑡 ,𝐹𝑚𝑎𝑝 )

15: Service_Manager(𝑔𝑜𝑎𝑙 .𝑟𝑖𝑔ℎ𝑡 ,𝐹𝑚𝑎𝑝 )

16: else if 𝑔𝑜𝑎𝑙 = or then
17: Service_Manager(𝑔𝑜𝑎𝑙 .𝑙𝑒 𝑓 𝑡, 𝐹𝑚𝑎𝑝 ) OR
18: Service_Manager(𝑔𝑜𝑎𝑙 .𝑟𝑖𝑔ℎ𝑡, 𝐹𝑚𝑎𝑝 )

19: return 1

This ranking is then leveraged by the Instance_Selector to select

the optimal service instance 𝑛 ∈ 𝑁 , for a given service name 𝑚

in a location 𝑙 , based on the location of the Service Manager com-

ponent itself. This is to ensure minimal latency of the network

transfer/communication. The rank list is updated periodically by

the Decision Maker (Algorithm 2).
We here highlight that each microservice typically implements a

single functionality. The set of functionalities exposed by the appli-

cation feed our goal model (f rule in Table 1). This allows MiLA4U
to perform the one-to-one type-to-instance adaptation, iteratively
refining the goal until leaf-level functionalities, thus promoting

generalizability and reusability [13].

3.2 Microservice Level Adaptation
The core logic of the microservices adaptation is handled by the

Decision Maker (cf. Fig. 2 B ), which uses the QoS and context data

of microservices to dynamically rank them, by using Algorithm
2. The algorithm takes as input the set of available microservices,

𝑆 , the average QoS of every microservice’s instance in the system

in the form of a QoS map, 𝑄𝑚𝑎𝑝 , and the context set 𝐶 , consist-

ing of the context information for all the microservices, i.e., the

location. The algorithm then initializes a multi-dimensional rank

map, 𝑅. Then, for each microservice 𝑠 in the set of microservices,

the algorithm determines the locations of the different instances

of 𝑠 (lines 3-4). For every microservice instance 𝑖 close to a loca-

tion 𝑙 , the algorithm checks if the instance is active and if true,

it identifies the average QoS of the instance from 𝑄𝑚𝑎𝑝 (lines 6-
8). This information is appended to a list, namely 𝑞𝑜𝑠_𝑙𝑖𝑠𝑡 . This
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Algorithm 2 Context driven QoS-aware Microservice Ranking

1: procedure Rank_Generator(𝑆 ,𝑄𝑚𝑎𝑝 ,𝐶)

2: Initialize rank map, 𝑅
3: for 𝑠 in 𝑆 do
4: for 𝑙 in𝐶 [𝑠.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ] do
5: 𝑞𝑜𝑠_𝑙𝑖𝑠𝑡 ← []

6: for 𝑖 in 𝑙 .𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
7: if 𝑖 is active then
8: 𝑞𝑜𝑠_𝑙𝑖𝑠𝑡 .add(𝑄𝑚𝑎𝑝 [𝑖 ])
9: 𝑅 [𝑠 ] [𝑙 ] ← 𝑞𝑜𝑠_𝑙𝑖𝑠𝑡 .sort()

10: return 𝑅

list is sorted at the level of service and location and added to the

multi-dimensional rank map that provides the QoS-based sorted list

of microservices instances, for each given couple of microservice

and location. The generated rank map 𝑅 is periodically sent to the

Service Manager, which exploits it when executing Algorithm 1.

Further, the Decision Maker also checks the average QoS offered by
every microservice to automatically add/remove instances in order

to maintain an acceptable QoS (response time, utilization, etc).

3.3 Device Level Adaptation
For handling the adaptation at the IoT devices level, the approach

makes use of the IoT Adapter (cf. Fig. 2 C ). Such adaptation is de-

termined by three aspects: i) the QoS of the IoT devices; ii) metrics

related to those microservices that are associated either directly or

indirectly with the IoT devices, in particular the microservices re-

quest arrival rate, and iii) the operational modes of the IoT devices,

namely normal mode (sensors gather data at standard frequency

rate) and critical mode (sensors gather data at a higher frequency
rate e.g., in critical situation). The IoT Adapter periodically receives

the information on the arrival rate metrics for the different mi-

croservices from the QoS Analyzer. It further uses this information

with the IoT devices QoS and operational mode to generate an

adaptation strategy. To this aim, it exploits Algorithm 3. The al-
gorithm, in particular, enacts adaptation on the devices to reduce

the overall energy consumption. It takes as input 𝐸𝜏 , the threshold

limit for the total energy consumption in a given time interval,

𝜏 . This can be defined by the stakeholder, such as an IoT expert,

based on the use case. In this work we make use of the adapta-

tion strategy which dynamically controls device communication

frequency as a mechanism to reduce energy consumption. Other

adaptation strategies could be employed to satisfy different QoS

constraints based on application domain. To this end, the algorithm

takes as input 𝐸𝐶 , the total energy consumed for the given inter-

val. Sensors’ reduction frequency, 𝑅𝐹𝑚𝑎𝑝 , defines the maximum

value of data transfer frequency that can be reduced for sensors

in normal mode. These values can again be defined by an IoT ex-

pert. The algorithm then takes the arrival rate per microservices,

𝐴𝑅𝑚𝑎𝑝 , containing information on the number of request arrivals

per microservice for a given 𝜏 , while 𝐴𝑇𝑚𝑎𝑝 denotes the required

arrival rate thresholds of the different microservices, below which

service accuracy issues are managed. For instance, if the arrival

rate threshold for the booking microservice is 100 requests, and the

average arrival rate is above it, then the data transfer from sensors

cannot be reduced, as it will affect the service accuracy. Eventu-

ally, the algorithm takes as input𝑀𝑚𝑎𝑝 , which contains the list of

sensors that are involved directly or indirectly with every microser-

vice. For instance, a 𝑝𝑒𝑜𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 might be sending real-time

data and an event booking microservice might be leveraging this

data to determine booking availability. This implies a dependency

between 𝑝𝑒𝑜𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and event booking microservice, which is

stored in𝑀𝑚𝑎𝑝 . Based on these inputs, the algorithm first checks

if 𝐸𝐶 is above 𝐸𝜏 in which case it loops over 𝐴𝑅𝑚𝑎𝑝 to determine,

for each microservice, if the arrival rate is less than the threshold

(lines 2-4). If true, it identifies the sensors corresponding to the

microservice by using 𝑀𝑚𝑎𝑝 and their frequencies are adjusted

based on the information stored in 𝑅𝐹𝑚𝑎𝑝 (lines 5-7). However, the
frequency of any sensor is reduced only if they are not in critical

mode (line 6). Once the arrival rate is above threshold, it resets the
sensors frequency to the original values (lines 8-11).

Algorithm 3 Edge Device Adaptation

1: procedure IoT Adapter(𝐸𝜏 , 𝐸𝐶 , 𝑅𝐹𝑚𝑎𝑝 , 𝐴𝑅𝑚𝑎𝑝 , 𝐴𝑇𝑚𝑎𝑝 , 𝑀𝑚𝑎𝑝 )

2: if 𝐸𝐶 > 𝐸𝜏 then
3: for𝑚 in𝐴𝑅𝑚𝑎𝑝 do ⊲𝑚 stands for microservice

4: if 𝐴𝑅𝑚𝑎𝑝 [𝑚] < 𝐴𝑇𝑚𝑎𝑝 [𝑚] then
5: for 𝑠𝑒𝑛𝑠𝑜𝑟 in𝑀𝑚𝑎𝑝 [𝑚] do
6: if 𝑠𝑒𝑛𝑠𝑜𝑟 .𝑚𝑜𝑑𝑒! = “𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙” then
7: 𝑠𝑒𝑛𝑠𝑜𝑟 .𝑓 𝑟𝑒𝑞 ← 𝑠𝑒𝑛𝑠𝑜𝑟 .𝑓 𝑟𝑒𝑞 + 𝑅𝐹𝑚𝑎𝑝 [𝑠𝑒𝑛𝑠𝑜𝑟 ]
8: else
9: if 𝐴𝑅𝑚𝑎𝑝 [𝑚] ≥ 𝐴𝑇𝑚𝑎𝑝 [𝑚] then
10: for 𝑠𝑒𝑛𝑠𝑜𝑟 in𝑀𝑚𝑎𝑝 [𝑚] do
11: reset 𝑠𝑒𝑛𝑠𝑜𝑟 .𝑓 𝑟𝑒𝑞

12: return 1

4 EXPERIMENTS
The main objective of the experiment and evaluation is to compute

the effectiveness and efficiency of the approach.

Research Questions. We aim to answer the following research

questions:

RQ1 How does the overall QoS of microservice-based IoT system

using MiLA4U compare to standard baselines?

• RQ1.1 How does the user goal satisfaction using MiLA4U
compare to the baselines and what is the impact of user goal

type on the response time?

• RQ1.2 What is the impact of MiLA4U on the energy con-

sumed by IoT devices compared to the baselines?

RQ2What is the computation overhead of MiLA4U compared to

the baselines?

Experiment Setup.We consider the NdR case study (see Section 2)

for evaluating our approach
4
. It consists of 7 microservices that

provides different functionalities (e.g., venue booking, parking lot

booking, etc.) based on the data gathered from 14 different sensors

(e.g., parking mats, QR code reader, etc.). Each of the microservices

were replicated to 4 instances making a system of 28 microservices.

For implementing the IoT devices, we made use of CupCarbon [14],

a state of the art smart city IoT simulator, especially for energy

simulation [15]. The microservices were deployed with docker on

two VM instances in Google Cloud, in two different geographical

zones. This was done to capture the different context dimensions

as well as QoS fluctuations that may arise from the type of CPU,

geographical zone, memory, etc. We used Python for implementing

the different algorithms. For our experiment, we used the goalmodel

to generate a goal file consisting of 20K goals (considering different

user goal combinations, including repetitions). Our experiments are

based on real time execution of the system for 5 hours (peak load

scenario). To simulate the user behavior, we developed a Python

4
Details, source code and dataset: https://github.com/karthikv1392/MiLA4U

https://github.com/karthikv1392/MiLA4U


Conference’17, July 2017, Washington, DC, USA Martina De Sanctis, Henry Muccini, and Karthik Vaidhyanathan

Table 2: Evaluation metric parameters.

Parameter Description Value
𝜏 Time Period 60 secs

𝑝𝑒𝑣 Penalty for energy violations 0.8

𝑝𝑟𝑡 Penalty for response time violations 0.8

𝐸𝑚𝑎𝑥 Maximum energy 1.45 joules

𝑒𝑅𝑇𝑚𝑎𝑥 Maximum expected response time 4 secs

𝑥𝑢 Weights on user goal satisfaction 5

𝑥𝑒 Weights on energy savings 4

script which uses the asyncio library to emulate concurrent user

sessions. The number of user requests per secondwere based on real

world benchmark trace [16]. The experiment was evaluated based

on the research questions on the evaluation candidates described in

Table 3. To measure the effectiveness of the approach, we make use

of the Utility Score (𝑈 ), as defined in Section 2, using normalized

values for 𝑄𝜏 and 𝑒𝜏 for every 𝜏-period. Parameters values are

reported in Table 2. We assign a slightly higher weight to the 𝑥𝑢
than 𝑥𝑒 because, although saving energy is a priority, we do not

want to do it at the expense of the user’s perceived response time.

Results for RQ1. Fig. 3a shows the cumulative utility score (based
on 𝑈 ) of all the candidate approaches. We can observe that the

approaches with dynamic workflow (𝐷𝑁 and 𝐷𝐴) offer a much

higher utility (close to 75%) compared to approaches with static

workflow. This, in turn, validates the fact that the increased flexi-

bility provided to the users together with effective algorithms can

ensure higher QoS of the overall system. Moreover, 𝐷𝐴 (which

also uses the algorithms 2 and 3) offers a much better utility (1538),

about 34% higher than 𝐷𝑁 (1145). This clearly demonstrates the

effectiveness of the adaptation algorithms used by 𝐷𝐴 to satisfy

the different QoS goals. In Fig. 3a, it is also visible that, as time

progresses, the gap between the utility offered by 𝐷𝐴 w.r.t. 𝐷𝑁

increases gradually. Moreover, as we can observe after 200 minutes,

while the 𝑆𝐴 and 𝑆𝑁 follow a constant trend, 𝐷𝐴 and 𝐷𝑁 are able

to offer higher utility. This is due to the increase in user goal arrival

rate that the dynamic workflow based approaches, especially DA,

are able to handle more effectively.

Results for RQ1.1. Fig. 3b shows the box plot of the goal utility
(𝑄𝜏 in 𝑈𝜏 ) per minute attained by each of the approaches. The

results clearly demonstrate the effectiveness of dynamic workflow

based approaches to satisfy user goals compared to that of their

static counterparts. 𝐷𝐴 offers the best goal utility with an average

of 0.67. Moreover, the average goal utility of 𝐷𝐴 is 31% higher than

that offered by 𝐷𝑁 and about 70% higher than that offered by, 𝑆𝑁

and 𝑆𝐴. In addition, we observed that the number of user goals

that exceeded 𝑒𝑅𝑇𝑚𝑎𝑥 were 50% less in 𝐷𝐴 compared to 𝐷𝑁 , thus

providing higher user goal satisfactionwhile using𝐷𝐴. Considering

the impact of user goal type on the response time, Fig. 3c, represents

the bar plot of the average response time offered by the two dynamic

approaches for different goal types
5
. As expected sequential goals

(𝑠𝑒𝑞), on average has the biggest impact on the response time. Even

in that case, 𝐷𝐴 is able to reduce response time by almost 15%.

Goals of type 𝑎𝑛𝑑 has the second biggest impact on the response

time and, 𝐷𝐴 is able to reduce the response time by 20%. Similar, is

the case with other goal types. These result clearly demonstrates

the ability of 𝐷𝐴 in guaranteeing higher user goal satisfaction.

5 𝑆𝐴 and 𝑆𝑁 use a static workflow and do not differentiate among user goal types.

Results for RQ1.2. As we can observe in Fig. 3d, 𝐷𝐴 could save

the maximum amount of energy compared to other approaches.

The total energy savings of 𝐷𝐴 was around 20% higher than 𝑆𝑁 ,

𝐷𝑁 and 9% higher than 𝑆𝐴. Moreover, besides 𝑆𝐴 uses the same

adaptation algorithm as 𝐷𝐴, the energy saved is higher in the case

of 𝐷𝐴. This is because since 𝑆𝐴 requires the user to complete a

predefined flow to achieve a specific functionality, the arrival rate

on almost all microservices is equally distributed as opposed to the

dynamic workflow-based approaches. This provides the IoT devices

with more level of flexibility to regulate the data transfer frequency.

Hence, the results depict that 𝐷𝐴 offers maximum energy savings

for the IoT devices compared to the candidate approaches.

Results forRQ2.To evaluate the computation overhead, we clocked

the time required to execute different algorithms. On average, the

service selection process in the case of 𝐷𝐴 and 𝐷𝑁 (algorithm 1)

took around 1.2 seconds to complete parsing, selection and exe-

cution of user’s goal, while it took, on average, around 3 seconds

in 𝑆𝐴 and 𝑆𝑁 . The ranking algorithm itself just took around 30

microseconds on average while the complete ranking process took

around 1.7 seconds, on average. This involves querying the recent

QoS values, generating the rank map and transferring the ranks to

the Service Manager. However, this is performed as a batch process

and not in real-time. The edge adaptation process (algorithm 3) took

around 0.5 seconds to execute the adaptation process, in which 0.3

seconds were taken by the network transfer of adaptation decision.

The results of our evaluation in RQ1 indicate the effective-

ness of our approach (𝐷𝐴) in improving the overall QoS of

a microservice based IoT system. Further, RQ1.1 and RQ1.2

demonstrate the effectiveness of our approach in guaran-

teeing higher user goal satisfaction and in reducing energy

consumption of the IoT devices respectively. Moreover, the

results of RQ2 proves that our approach is able to guarantee

effectiveness without compromising on the overall efficiency.

Threats to Validity. Threats to construct validity relates to the

IoT simulation configurations. To this end, we used configurations

based on the real IoT deployment of the NdR system. Threats to

external validity concern the generalizability and scalability of our

approach. Although our approach has been applied on a system

with 28 microservices and 14 sensors, it uses techniques that can

be generalized and extended to more complex systems, as long as

there are methods to obtain QoS information of microservices and

IoT devices.

5 RELATEDWORK
In self-adaptive systems, goals are used to express the desired run-

time behaviour of systems execution (e.g., in [17]). However, in re-

cent years, the pervasive impact that mobile applications are having

on society, pushed forward the need for defining personal objectives
at users level, as done in our work. To this aim, Qian et al. [18]
proposed MobiGoal, a framework exploiting a runtime goal model

supporting the adaptive scheduling of user’s goals and execution of

tasks. Similarly to MobiGoal, our goal model allows the definition

and fulfillment of personal goals in a customizable and adaptive

way. However, in MobiGoal, a goal is defined at design-time and it

drives the design of the application, whose runtime execution sup-

ports the goal’s fulfillment. Differently, in our approach, users goals

emerge at runtime and users are not aware of the goal model, its
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Table 3: Evaluation Candidates for the Experiment
Name and Description

Static workflow-no-adaptation (SN): It emulates the behavior of NdR application without using goals. It uses a static application workflow, where

each user request has to follow the sequence made by ticket_availability→ event_booking→ parking_recommendation→ weather_checking.

To ensure fairness among the evaluation candidates, the same goal file is used, however, to accomplish any goal, the user has to execute the flow

until the goal is reached.

Static workflow-adaptation (SA): It is similar to the previous candidate but it uses the ranking and Edge adaptation algorithms (algorithms 2 and 3)
for the QoS aware adaptation of the microservices (although there is no selection due to the absence of dynamic goals) and IoT devices.

Dynamic workflow and selection (DN): It emulates the behavior of NdR application allowing users to dynamically define goals.

It implements the User Goal Parser and the service management algorithm (algorithm 1) but it does not consider the IoT devices and microservices

level adaptation (It randomly selects a microservice instance instead of using algorithm 2).

MiLA4U (DA): It emulates the approach described in this paper which provides users with the ability to dynamically define goals and further uses the

service management, ranking and edge adaptation (algorithms 1, 2 and 3) to address adaptation concerns of user, microservices and IoT devices.

(a) Cumulative Utility (b) Utility per user goal

(c) Response Time per User Goal (d) Cumulative Energy Consumed

Figure 3: Results of the performed experiment

syntax and semantic. They simply select functionalities and express

preferences in their applications (e.g., by means check lists). From

this information the application’s workflow is dynamically derived.

Alkhabbas et al. also make use of goal-driven approaches for the

realization of emergent configurations in the IoT [11] and their

deployment [19]. However, a goal model and microservice-based

adaptation are not provided. To show the wide range of application

of different low-level goal models, Kalia et al. [20] exploit goals to
transform people-driven processes to chatbot services. Noura et
al. [21], instead, propose an approach for understanding end-users

goals from voice inputs in smart homes. Lastly, our approach is

comparable to services mashups, namely value-added services build

from existing services. In [22] the authors propose an approach

that combines the modeling power of software product line feature

models with AI planning techniques to perform service mashups

composition. A responsive decentralized composition of service

mashups for the IoT, instead, is proposed in [23]. However, in [22]

the IoT is neglected, whereas the work in [23] does not consider

the runtime adaptation of the developed IoT applications.

Works providing adaptation in microservice-based environments
have also been presented. Florio et al. [24] provided an agent-

based approach for handling adaptation through a decentralized

MAPE loop. A reference architecture for self-adaptation in mi-

croservices using an adaptation registry was proposed by Baylov

et al. [25]. Khazaei et al. [26], instead, introduced the idea of using

self-adaptation as a service for managing adaptations concerns in
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microservice-based architectures. QoS has become a major concern

in service-based systems from a while [27]. However, only a few

works addressing QoS-driven adaptation exist in the context of

microservices-based systems (e.g., [28, 29]).

Different approaches for self-adaptation in IoT have been pro-

posed [7, 11]. Model-Driven Engineering based approaches were

presented, for instance in [30] where the adaptation is carried out

using the concept of models@run.time andMAPE-K loop. An agent-

based framework for performing self-adaptation for IoT applica-

tions was proposed in [31]. De Sanctis et al. [10] presented an

approach for the dynamic user-driven QoS-based formation of IoT

architectures, by leveraging AI planning to derive operational plans.

However, while these works focus on the optimal selection of de-

vices, microservices are neglected.

Lastly, although several multi-level (and multi-layer) adaptation

approaches exist (e.g., [32, 33]), they refer to different levels w.r.t. our

approach, given the specific context of the work. To the best of our

knowledge, a full-fledged self-adaptation approach that combines

runtime user’s defined goals, microservices and IoT, as MiLA4U,
does not exist.MiLA4U further considers adaptation challenges that

emerge when IoT devices and microservices are used in tandem.

6 CONCLUSION AND FUTUREWORK
This paper shows how a user-driven multi-level approach can be

used to effectively handle adaptation concerns arising from differ-

ent levels in an microservice-based IoT system. The results of our

evaluation on a real case study are promising. They also indicate

how an adaptation centered around users can provide them with a

greater flexibility and how this can support better management of

QoS at multiple levels. With regard to the future work, i) we would

like to focus on the scalability aspect of MiLA4U, by applying it to

large scale systems with larger set of functionalities, IoT devices

with multiple QoS dimensions, e.g., utilization, data traffic (IoT);

ii) we plan to extend MiLA4U to support adaptation based on user

and functionality types, i.e., users with high-priority or critical

functionalities may require higher QoS; iii) we plan to leverage ma-

chine learning techniques to perform proactive adaptations, e.g., for

service ranking and IoT based adaptation.
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